15. 在中.已知.且.试判断的形状. 查看更多

 

题目列表(包括答案和解析)

(本题满分14分)已知数列中,且点在直线上.   (1)求数列的通项公式;   (2)若函数求函数的最小值;   (3)设表示数列的前项和.试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立? 若存在,写出的解析式,并加以证明;若不存在,试说明理由.

查看答案和解析>>

(本题满分14分)

已知数列中,且点在直线上.

   (1)求数列的通项公式;

   (2)若函数求函数的最小值;

   (3)设表示数列的前项和,

试证明:

查看答案和解析>>

(本题满分14分)已知函数 

),且函数的最小正周期为.

(Ⅰ)求函数的解析式;

(Ⅱ)在△中,角所对的边分别为.若,且,试求的值.

 

 

 

查看答案和解析>>

(本题满分14分,第(1)小题7分,第(2)小题7分)

某地发生特大地震和海啸,使当地的自来水受到了污染,某部门对水质检测后,决定往水中投放一种药剂来净化水质。已知每投放质量为的药剂后,经过天该药剂在水中释放的浓度(毫克/升) 满足,其中,当药剂在水中释放的浓度不低于 (毫克/升)时称为有效净化;当药剂在水中释放的浓度不低于 (毫克/升) 且不高于10(毫克/升)时称为最佳净化。

    (1)如果投放的药剂质量为,试问自来水达到有效净化一共可持续几天?

    (2)如果投放的药剂质量为,为了使在7天之内(从投放药剂算起包括7天)的自来水达到最佳净化,试确定应该投放的药剂质量的值。

 

查看答案和解析>>

(本题满分14分,第(1)小题7分,第(2)小题7分)
某地发生特大地震和海啸,使当地的自来水受到了污染,某部门对水质检测后,决定往水中投放一种药剂来净化水质。已知每投放质量为的药剂后,经过天该药剂在水中释放的浓度(毫克/升) 满足,其中,当药剂在水中释放的浓度不低于(毫克/升)时称为有效净化;当药剂在水中释放的浓度不低于(毫克/升) 且不高于10(毫克/升)时称为最佳净化。
(1)如果投放的药剂质量为,试问自来水达到有效净化一共可持续几天?
(2)如果投放的药剂质量为,为了使在7天之内(从投放药剂算起包括7天)的自来水达到最佳净化,试确定应该投放的药剂质量的值。

查看答案和解析>>


同步练习册答案