题目列表(包括答案和解析)
(本题满分14分)已知数列
中,
且点
在直线
上. (1)求数列
的通项公式; (2)若函数
求函数
的最小值; (3)设
表示数列
的前项和.试问:是否存在关于
的整式
,使得
对于一切不小于2的自然数
恒成立? 若存在,写出
的解析式,并加以证明;若不存在,试说明理由.
(本题满分14分)
已知数列
中,
且点
在直线
上.
(1)求数列
的通项公式;
(2)若函数
求函数
的最小值;
(3)设
表示数列
的前
项和,
试证明:
.
(本题满分14分)已知函数![]()
![]()
(
),且函数
的最小正周期为
.
(Ⅰ)求函数
的解析式;
(Ⅱ)在△
中,角
所对的边分别为
.若
,
,且
,试求
的值.
(本题满分14分,第(1)小题7分,第(2)小题7分)
某地发生特大地震和海啸,使当地的自来水受到了污染,某部门对水质检测后,决定往水中投放一种药剂来净化水质。已知每投放质量为
的药剂后,经过
天该药剂在水中释放的浓度
(毫克/升) 满足
,其中
,当药剂在水中释放的浓度不低于
(毫克/升)时称为有效净化;当药剂在水中释放的浓度不低于
(毫克/升)
且不高于10(毫克/升)时称为最佳净化。
(1)如果投放的药剂质量为
,试问自来水达到有效净化一共可持续几天?
(2)如果投放的药剂质量为
,为了使在7天之内(从投放药剂算起包括7天)的自来水达到最佳净化,试确定应该投放的药剂质量
的值。
(本题满分14分,第(1)小题7分,第(2)小题7分)
某地发生特大地震和海啸,使当地的自来水受到了污染,某部门对水质检测后,决定往水中投放一种药剂来净化水质。已
知每投放质量为
的药剂后,经过
天该药剂在水中释放的浓度
(毫克/升) 满足
,其中
,当药剂在水中释放的浓度不低于
(毫克/升)时称为有效净化;当药剂在水中释放的浓度不低于
(毫克/升) 且不高于10(毫克/升)时称为最佳净化。
(1)如果投放的药剂质量为
,试问自来水达到有效净化一共可持续几天?
(2)如果投放的药剂质量为
,为了使在7天之内(从投放药剂算起包括7天)的自来水达到最佳净化,试确定应该投放的药剂质量
的值。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com