题目列表(包括答案和解析)
.本小题满分12分)已知函数![]()
是R上的奇函数,
当
时
取得极值
,
(1)求
的单调区间和极大值;
(2)证明对任意
,不等式
恒成立. 、
.(本小题满分13分)
已知数列
是其前
项和,且
.
(1)求数列
的通项公式;
(2)设
是数列
的前
项和
,求T10的值
.(本小题满分14分)已知等比数列
的公比为
,首项为
,其前
项的和为
.数列
的前
项的和为
, 数列
的前
项的和为![]()
(Ⅰ)若
,
,求
的通项公式;(Ⅱ)①当
为奇数时,比较
与
的大小; ②当
为偶数时,若
,问是否存在常数
(与n无关),使得等式
恒成立,若存在,求出
的值;若不存在,说明理由
.本小题满分15分)
如图,已知椭圆E:![]()
,焦点为
、
,双曲线G:![]()
的顶点是该椭
圆的焦点,设
是双曲线G上异于顶点的任一点,直线
、
与椭圆的交点分别为A、B和C、D,已知三角形
的周长等于
,椭圆四个顶点组成的菱形的面积为
.![]()
(1)求椭圆E与双曲线G的方程;
(2)设直线
、
的斜率分别为
和
,探求
和![]()
的关系;
(3)是否存在常数
,使得
恒成立?
若存在,试求出
的值;若不存在, 请说明理由.
.(
本小题满分13分)
某慈善机构举办一次募捐演出,有一万人参加,每人一张门票,每张100元. 在演出过程中穿插抽奖活动.第一轮抽奖从这一万张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个数
,
(
,
),随即按如右所示程序框图运行相应程序.若电脑显示“中奖”,则抽奖者获得9000元奖金;若电脑显示“谢谢”,则不中奖.![]()
(Ⅰ)已知小曹在第一轮抽奖中被抽中,
求小曹在第二轮抽奖中获奖的概率;
(Ⅱ)若小叶参加了此次活动,求小叶参加此次活动收益的期望;
(Ⅲ)若此次募捐除奖品和奖金外,不计其它支出,该机构想获得96万元的慈善款.问该慈善机构此次募捐
是否能达到预期目标.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com