由 将上面各等式相加.得 查看更多

 

题目列表(包括答案和解析)

通过计算可得下列等式:

22-12=2×1+1,

32-22=2×2+1,

42-32=2×3+1,

……

(n+1)2-n2=2n+1.

将以上各等式两边分别相加得(n+1)2-12=2(1+2+…+n)+n,即1+2+3+…+n=.

(1)类比上述求法,请你求出12+22+32+…+n2的值.

(2)根据上述结论试求12+32+52+…+992的值.?

查看答案和解析>>

通过计算可得下列等式:

22-12=2×1+1,

32-22=2×2+1,

42-32=2×3+1,

……

(n+1)2-n2=2n+1.

将以上各等式两边分别相加得(n+1)2-12=2(1+2+…+n)+n,即1+2+3+…+n=.

(1)类比上述求法,请你求出12+22+32+…+n2的值.

(2)根据上述结论试求12+32+52+…+992的值.?

查看答案和解析>>

为了了解大学生在购买饮料时看营养说明是否与性别有关,对某班50人进行问卷调查得到2×2列联表.
看说明 不看说明 合计
女生 5
男生 10
合计 50
 已知在全部50人中随机抽取1人看营养说明的学生的概率为
3
5

(Ⅰ)请将上面2×2列联表补充完整;
(Ⅱ)已知看营养说明的10位男生中,同时看生产日期的有A1、A2、A3、A4、A5;同时看生产厂家的有Bl、B2、B3:同时看保质期的有C1、C2.现从看生产日期、看生产厂家、看保质期的男生中各选出一名进行其他方面的调查,求B1和C1不全被选中的概率;
(Ⅲ)是否有99.5%的把握认为“看营养说明与性别有关”?说明你的理由.

查看答案和解析>>

(1)sin210°+cos240°+sin10°•cos40°=
3
4

(2)sin26°+cos236°+sin6°•cos36°=
3
4

(3)sin222°+cos252°+sin22°•cos52°=
3
4

(4)sin215°+cos245°+sin15°•cos45°=
3
4

由上面各题的结构规律,你能否提出一个猜想?并证明你的猜想?

查看答案和解析>>

通过计算可得下列等式:22-12=2×1+1,32-22=2×2+1,42-32=2×3+1,┅┅,(n+1)2-n2=2×n+1
将以上各式分别相加得:(n+1)2-12=2×(1+2+3+…+n)+n,即:1+2+3+…+n=
n(n+1)2

类比上述求法:请你求出12+22+32+…+n2的值(要求必须有运算推理过程).

查看答案和解析>>


同步练习册答案