对方程(x-2)(x-5)=1的根判断错误的是( ) A.两个根均在(2.5)内 B.有一个根在内 C.有一个根在内 D.在[2.5]上没有实数根 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=ax+bsinx,当x=
π
3
时,f(x)取得极小值
π
3
-
3

(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记h(x)=
1
8
[5x-f(x)]
,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>

设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
(Ⅰ)已知函数f(x)=x-2sinx.求证:y=x+2为曲线f(x)的“上夹线”.
(Ⅱ)观察下图:
精英家教网
根据上图,试推测曲线S:y=mx-nsinx(n>0)的“上夹线”的方程,并给出证明.

查看答案和解析>>

设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
(Ⅰ)已知函数f(x)=x-2sinx.求证:y=x+2为曲线f(x)的“上夹线”.
(Ⅱ)观察下图:

根据上图,试推测曲线S:y=mx-nsinx(n>0)的“上夹线”的方程,并给出证明.

查看答案和解析>>

已知函数f(x)=ax+bsinx,当时,f(x)取得极小值
(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>

(选做题)
A.如图,AD是∠BAD的角平分线,⊙O过点A且与BC边相切于点D,与AB,AC分别交于E、F两点.求证:EF∥BC.
B.已知M=,求M﹣1
C.已知直线l的极坐标方程为(ρ∈R),它与曲线C为参数)相较于A、B两点,求AB的长.
D.设函数f(x)=|x﹣2|+|x+2|,若不等式|a+b|﹣|4a﹣b|≤|a|,f(x)对任意a,b∈R,且a≠0恒成立,求实数x的取值范围.

查看答案和解析>>


同步练习册答案