2.解:函数的定义域为. 当时..即是函数的递增区间.当时. 所以值域为. 查看更多

 

题目列表(包括答案和解析)

设函数

(Ⅰ) 当时,求的单调区间;

(Ⅱ) 若上的最大值为,求的值.

【解析】第一问中利用函数的定义域为(0,2),.

当a=1时,所以的单调递增区间为(0,),单调递减区间为(,2);

第二问中,利用当时, >0, 即上单调递增,故上的最大值为f(1)=a 因此a=1/2.

解:函数的定义域为(0,2),.

(1)当时,所以的单调递增区间为(0,),单调递减区间为(,2);

(2)当时, >0, 即上单调递增,故上的最大值为f(1)=a 因此a=1/2.

 

查看答案和解析>>

D

解析:当x>0时,,即

则函数在区间(0,+∞)上为减函数,又在定义域上是奇函数,

∴函数在定义域上是偶函数,且,则>0在(0,+∞)上的解集是(0,2);

函数是定义域上的奇函数,则>0的解集是(-∞,-2)∪(0,2).

查看答案和解析>>

D

解析:当x>0时,,即

则函数在区间(0,+∞)上为减函数,又在定义域上是奇函数,

∴函数在定义域上是偶函数,且,则>0在(0,+∞)上的解集是(0,2);

函数是定义域上的奇函数,则>0的解集是(-∞,-2)∪(0,2).

查看答案和解析>>

D

解析:当x>0时,,即

则函数在区间(0,+∞)上为减函数,又在定义域上是奇函数,

∴函数在定义域上是偶函数,且,则>0在(0,+∞)上的解集是(0,2);

函数是定义域上的奇函数,则>0的解集是(-∞,-2)∪(0,2).

查看答案和解析>>

已知函数的最小值为0,其中

(Ⅰ)求的值;

(Ⅱ)若对任意的成立,求实数的最小值;

(Ⅲ)证明).

【解析】(1)解: 的定义域为

,得

当x变化时,的变化情况如下表:

x

-

0

+

极小值

因此,处取得最小值,故由题意,所以

(2)解:当时,取,有,故时不合题意.当时,令,即

,得

①当时,上恒成立。因此上单调递减.从而对于任意的,总有,即上恒成立,故符合题意.

②当时,,对于,故上单调递增.因此当取时,,即不成立.

不合题意.

综上,k的最小值为.

(3)证明:当n=1时,不等式左边==右边,所以不等式成立.

时,

                      

                      

在(2)中取,得

从而

所以有

     

     

     

     

      

综上,

 

查看答案和解析>>


同步练习册答案