本小题13分 在直角坐标系中,曲线C的参数方程为(为参数),点M是曲线C上的动点. (I)求线段OM的中点P的轨迹的直角坐标方程; (II)以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,若直线L的极坐标方程为,求点P到直线L距离的最大值. 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)

在平面直角坐标系xOy中,已知点A(-1, 0)、B(1, 0), 动点C满足条件:△ABC的周长为2+2.记动点C的轨迹为曲线W.

(Ⅰ)求W的方程;

(Ⅱ)经过点(0, )且斜率为k的直线l与曲线W 有两个不同的交点PQ,已知点M(,0),

N(0, 1),是否存在常数k,使得向量共线?如果存在,求出k的值;如果不存在,

请说明理由.

  

查看答案和解析>>

(本小题满分13分)

在平面直角坐标系xOy中,已知点A(-1, 0)、B(1, 0), 动点C满足条件:△ABC的周长为2+2.记动点C的轨迹为曲线W.

(Ⅰ)求W的方程;

(Ⅱ)经过点(0, )且斜率为k的直线l与曲线W 有两个不同的交点PQ,已知点M(,0),

N(0, 1),是否存在常数k,使得向量共线?如果存在,求出k的值;如果不存在,

请说明理由.

  

查看答案和解析>>

 (2012年高考湖南卷理科21)(本小题满分13分)

在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.

(Ⅰ)求曲线C1的方程;

(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.

查看答案和解析>>

【2012高考真题湖南理21】(本小题满分13分)

在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.

(Ⅰ)求曲线C1的方程;

(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.

查看答案和解析>>

(本小题满分13分)选修4—4:坐标系与参数方程

在直角坐标系xOy中,曲线C的参数方程为为参数),点M的坐标为;若以该直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,

(1)请将点M的直角坐标化为极坐标(限定);

(2)求出以M为圆心,半径为的圆的极坐标方程.

(3)若点N是曲线C上的任一点,求线段MN的长度的最大值和最小值.

查看答案和解析>>


同步练习册答案