1.设函数f(x, y)=的定义域是全体实数集R.那么实数m 的取值范围是( ). (A)0<m<4 (B)0≤m≤4 (C)m≥4 (D)0<m≤4 查看更多

 

题目列表(包括答案和解析)

设函数y=f(x)的定义域为全体R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)成立,数列{an}满足a1=f(0),且f(an+1)=
1
f(
-an
2an+1
)
(n∈N*
(Ⅰ)求证:y=f(x)是R上的减函数;          
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若不等式
k
(1+a1)(1+a2)…(1+an)
-
1
2n+1
≤0
对一切n∈N*均成立,求k的最大值.

查看答案和解析>>

设函数y=f(x)的定义域为全体R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)成立,数列{an}满足a1=f(0),且(n∈N*
(1)求证:y=f(x)是R上的减函数.
(2)求证:{an}是等差数列,并求通项an
(3)若不等式对一切n∈N*均成立,求k的最大值.

查看答案和解析>>

设函数y=f(x)的定义域为全体R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)成立,数列{an}满足a1=f(0),且(n∈N*
(1)求证:y=f(x)是R上的减函数.
(2)求证:{an}是等差数列,并求通项an
(3)若不等式对一切n∈N*均成立,求k的最大值.

查看答案和解析>>

设函数y=f(x)的定义域为全体R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)成立,数列{an}满足a1=f(0),且(n∈N*
(Ⅰ)求证:y=f(x)是R上的减函数;          
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若不等式对一切n∈N*均成立,求k的最大值.

查看答案和解析>>

设函数y=f(x)的定义域为全体R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)成立,数列{an}满足a1=f(0),且(n∈N*
(1)求证:y=f(x)是R上的减函数.
(2)求证:{an}是等差数列,并求通项an
(3)若不等式对一切n∈N*均成立,求k的最大值.

查看答案和解析>>


同步练习册答案