以两条坐标轴为对称轴的椭圆过点P(.-4)和Q(-.3).此椭圆的方程是( ) A. +y2=1 B.x2+=1 C.+y2=1或x2+=1 D.非A.B.C答案 查看更多

 

题目列表(包括答案和解析)

以两条坐标轴为对称轴的椭圆过点P(,-4)和Q(,3),则此椭圆方程为(    )

A.+x2=1                                            B.+y2=1

C.+y2=1或x2+=1                          D.以上都不对

查看答案和解析>>

精英家教网已知椭圆E的中心在原点,焦点在x轴上,离心率为
3
2
,且过抛物线C:x2=4y的焦点F.
(I)求椭圆E的方程;
(II)过坐标平面上的点F'作拋物线c的两条切线l1和l2,它们分别交拋物线C的另一条切线l3于A,B两点.
(i)若点F′恰好是点F关于-轴的对称点,且l3与拋物线c的切点恰好为拋物线的顶点(如图),求证:△ABF′的外接圆过点F;
(ii)试探究:若改变点F′的位置,或切线l3的位置,或抛物线C的开口大小,(i)中的结论是否仍然成立?由此给出一个使(i)中的结论成立的命题,并加以证明.

查看答案和解析>>

已知椭圆E的中心在原点,焦点在x轴上,离心率为,且过抛物线C:x2=4y的焦点F.
(I)求椭圆E的方程;
(II)过坐标平面上的点F'作拋物线c的两条切线l1和l2,它们分别交拋物线C的另一条切线l3于A,B两点.
(i)若点F′恰好是点F关于-轴的对称点,且l3与拋物线c的切点恰好为拋物线的顶点(如图),求证:△ABF′的外接圆过点F;
(ii)试探究:若改变点F′的位置,或切线l3的位置,或抛物线C的开口大小,(i)中的结论是否仍然成立?由此给出一个使(i)中的结论成立的命题,并加以证明.

查看答案和解析>>

已知抛物线、椭圆和双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这三条曲线的方程;
(2)已知动直线l过点P(3,0),交抛物线于A,B两点,是否存在垂直于x轴的直线l′被以AP为直径的圆截得的弦长为定值?若存在,求出L′的方程;若不存在,说明理由.

查看答案和解析>>

已知抛物线、椭圆和双曲线都经过点M(2,1),它们在y轴上有一个公共焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这三条曲线的方程;
(2)已知动直线l过点P(0,3),交抛物线于A、B两点,是否存在垂直于y轴的直线m被以AP为直径的圆截得的弦长为定值?若存在,求出m的方程;若不存在,说明理由.

查看答案和解析>>


同步练习册答案