某游泳馆出售学生游泳卡.每张240元.使用规定:不记名.每卡每次只限1人.每天只限一次. 某班有48名学生, 老师打算组织同学们集体去游泳, 且要求每位学生能游8次.在费用开支方面, 除需购买x张游泳卡外, 每天游泳还要包一辆汽车, 无论乘坐多少名学生. 每次包车费均为40元. (1)试写出游泳活动总开支y元关于购买游泳卡张数x 的函数解析式, (2)试求出购买多少张游泳卡.可以使每位同学需要交纳的费用最少? 最少需要交多少元? 21 附加题: (本题分值6分, 计入总分, 但本题与必做题得分之和不超过100分.) 已知a , b都是正数.△ABC是平面直角坐标系xOy内, 以两点A 为顶点的正三角形.且它的第三个顶点C在第一象限内. (1)若△ABC能含于正方形D = { | 0 £ x £ 1, 0£ y £ 1}内. 试求 变量 a , b 的约束条件.并在直角坐标系aOb内内画出这个约束等条件表示的平面区域, 所得的约束条件内移动时.求△ABC面积S的最大值.并求此时的值. 查看更多

 

题目列表(包括答案和解析)

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>


同步练习册答案