2.等腰三角形.若一腰的两个端点坐标分别是..顶点.则另一腰的一个端点的轨迹方程是 ( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x-y+b=0是抛物线y2=4x的一条切线.
(1)求椭圆的方程;
(2)过点S(0,-
13
)
的动直线L交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线是抛物线的一条切线.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点的动直线L交椭圆CAB两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理由.

查看答案和解析>>

已知椭圆的两焦点与短轴的一个端点连结成等腰直角三角形,直线是抛物线的一条切线。

(1)   求椭圆方程;

(2)   直线交椭圆于A、B两点,若点P满足(O为坐标原点), 判断点P是否在椭圆上,并说明理由。

 

查看答案和解析>>

已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线是抛物线的一条切线.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点的动直线L交椭圆C  A.B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理由.

 

查看答案和解析>>

已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线是抛物线的一条切线.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点的动直线L交椭圆CAB两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理由.

 

查看答案和解析>>


同步练习册答案