如图.正方形ABCD边长为4.E是AB的中点.F是BC边上的一个动点.将△ADE和△DCF分别沿DE.DF折起.使A.C重合于A′.则A′点到平面DEF的距离的最大值为( ) A. B. C. 2 D. 3 查看更多

 

题目列表(包括答案和解析)

如图,正方形ABCD内接于椭圆
x2
a2
+
y2
b2
=1(a>b>0)
,且它的四条边与坐标轴平行,正方形MNPQ的顶点M,N在椭圆上,顶点P,Q在正方形的边AB上,且A,M都在第一象限.
(I)若正方形ABCD的边长为4,且与y轴交于E,F两点,正方形MNPQ的边长为2.
①求证:直线AM与△ABE的外接圆相切;
②求椭圆的标准方程.
(II)设椭圆的离心率为e,直线AM的斜率为k,求证:2e2-k是定值.

查看答案和解析>>

如图,正方形ABCD内接于椭圆=1(a>b>0),且它的四条边与坐标轴平行,正方形MNPQ的顶点M、N在椭圆上,顶点P、Q在正方形的边AB上,且A、M都在第一象限.
 
(1)若正方形ABCD的边长为4,且与y轴交于E、F两点,正方形MNPQ的边长为2.
①求证:直线AM与△ABE的外接圆相切;
②求椭圆的标准方程;
(2)设椭圆的离心率为e,直线AM的斜率为k,求证:2e2-k是定值.

查看答案和解析>>

如图,正方形ABCD内接于椭圆=1(a>b>0),且它的四条边与坐标轴平行,正方形MNPQ的顶点M、N在椭圆上,顶点P、Q在正方形的边AB上,且A、M都在第一象限.
 
(1)若正方形ABCD的边长为4,且与y轴交于E、F两点,正方形MNPQ的边长为2.
①求证:直线AM与△ABE的外接圆相切;
②求椭圆的标准方程;
(2)设椭圆的离心率为e,直线AM的斜率为k,求证:2e2-k是定值.

查看答案和解析>>

如图,正方形ABCD内接于椭圆,且它的四条边与坐标轴平行,正方形MNPQ的顶点M,N在椭圆上,顶点P,Q在正方形的边AB上,且A,M都在第一象限.
(I)若正方形ABCD的边长为4,且与y轴交于E,F两点,正方形MNPQ的边长为2.
①求证:直线AM与△ABE的外接圆相切;
②求椭圆的标准方程.
(II)设椭圆的离心率为e,直线AM的斜率为k,求证:2e2-k是定值.

查看答案和解析>>

精英家教网如图,ABCD是边长为2的正方形纸片,沿某动直线l为折痕,正方形在其下方的部分向上翻折,使得每次翻折后点B都落在边AD上,记为B′;折痕l与AB交于点E,点M满足关系式
EM
=
EB
+
EB′

(1)如图,建立以AB中点为原点的直角坐标系,求点M的轨迹方程;
(2)若曲线C是由点M的轨迹及其关于边AB对称的曲线组成的,
F是AB边上的一点,
BA
BF
=4,过点F的直线交曲线C于P、Q两点,且
PF
FQ
,求实数λ的取值范围.

查看答案和解析>>


同步练习册答案