若椭圆的离心率e=,则k的值是( ) A) B) 8 C) 或14 D) 8或 查看更多

 

题目列表(包括答案和解析)

若椭圆=1的离心率为e=则k的值是

[  ]

A.
B.8
C.或14
D.8或

查看答案和解析>>

定义:离心率e=
5
-1
2
的椭圆为“黄金椭圆”,已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点分别为F1(-c,0)、F2(c,0)(c>0),P为椭圆E上的任意一点.
(1)试证:若a,b,c不是等比数列,则E一定不是“黄金椭圆”;
(2)设E为“黄金椭圆”,问:是否存在过点F2、P的直线l,使l与y轴的交点R满足
RP
=-2
PF2
?若存在,求直线l的斜率k;若不存在,请说明理由;
(3)设E为“黄金椭圆”,点M是△PF1F2的内心,连接PM并延长交F1F2于N,求
|PM|
|PN|
的值.

查看答案和解析>>

已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0),以椭圆E的左焦点F(-c,0)为圆心,以a-c为半径作圆F,过B(0,b)作圆F的切线,切点分别是M、N,若直线MN的斜率k∈( -
2
2
,  -
3
3
 )
,则椭圆的离心率e的取值范围是
1
2
<e<
3
3
1
2
<e<
3
3

查看答案和解析>>

已知椭圆经过点(0),离心率为,经过椭圆C的右焦点F的直线l交椭圆于A、B两点,点A、F、B在直线x=4上的射影依次为点D、K、E.

(1)求椭圆C的方程;

(2)若直线l交y轴于点M,且,当直线l的倾斜角变化时,探求的值是否为定值?若是,求出的值,否则,说明理由;

(3)连接AE、BD,试探索当直线l的倾斜角变化时,直线AE与BD是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.

查看答案和解析>>

定义:离心率的椭圆为“黄金椭圆”,已知椭圆的两个焦点分别为F1(-c,0)、F2(c,0)(c>0),P为椭圆E上的任意一点.
(1)试证:若a,b,c不是等比数列,则E一定不是“黄金椭圆”;
(2)设E为“黄金椭圆”,问:是否存在过点F2、P的直线l,使l与y轴的交点R满足?若存在,求直线l的斜率k;若不存在,请说明理由;
(3)设E为“黄金椭圆”,点M是△PF1F2的内心,连接PM并延长交F1F2于N,求的值.

查看答案和解析>>


同步练习册答案