3.所求的轨迹方程为x2+y2-8x-4y+10=0.轨迹是以 查看更多

 

题目列表(包括答案和解析)

如图所示,点N在圆x2+y2=4上运动,DN⊥x轴,点M在DN的延长线上,且
DM
DN
(λ>0).
(1)求点M的轨迹方程,并求当λ为何值时M的轨迹表示焦点在x轴上的椭圆;
(2)当λ=
1
2
时,(1)所得曲线记为C,已知直线l:
x
2
+y=1
,P是l上的动点,射线OP(O为坐标原点)交曲线C于点R,又点Q在OP上且满足|OQ|•|OP|=|OR|2,求点Q的轨迹方程.

查看答案和解析>>

已知曲线C:y=x2与直线l:x-y+2=0交于两点A(xA,yA)和B(xB,yB),且xA<xB.记曲线C在点A和点B之间那一段L与线段AB所围成的平面区域(含边界)为D.设点P(s,t)是L上的任一点,且点P与点A和点B均不重合,若点Q是线段AB的中点,试求线段PQ的中点M的轨迹方程.

查看答案和解析>>

点P是圆x2+y2=16上的一个动点,过点P作D垂直于x轴,垂足为D,Q为线段PD的中点.
(Ⅰ)求点Q的轨迹方程.
(Ⅱ)已知点M(1,1)为上述所求方程的图形内一点,过点M作弦AB,若点M恰为弦AB的中点,求直线AB的方程.

查看答案和解析>>

已知曲线C:y=x2与直线l:x-y+2=0交于两点A(xA,yA)和B(xB,yB),且xA<xB.记曲线C在点A和点B之间那一段L与线段AB所围成的平面区域(含边界)为D.设点P(s,t)是L上的任一点,且点P与点A和点B均不重合.
(1)若点Q是线段AB的中点,试求线段PQ的中点M的轨迹方程;
(2)若曲线G:x2-2ax+y2-4y+a2+
5125
=0与D有公共点,试求a的最小值.

查看答案和解析>>

(2012•奉贤区一模)出租车几何学是由十九世纪的赫尔曼-闵可夫斯基所创立的.在出租车几何学中,点还是形如(x,y)的有序实数对,直线还是满足ax+by+c=0的所有(x,y)组成的图形,角度大小的定义也和原来一样.直角坐标系内任意两点A(x1,y1),B(x2,y2)定义它们之间的一种“距离”:|AB|=|x1-x2|+|y1-y2|,请解决以下问题:
(1)求线段x+y=2(x≥0,y≥0)上一点M(x,y)的距离到原点O(0,0)的“距离”;
(2)定义:“圆”是所有到定点“距离”为定值的点组成的图形,求“圆周”上的所有点到点Q(a,b)的“距离”均为 r的“圆”方程;
(3)点A(1,3)、B(6,9),写出线段AB的垂直平分线的轨迹方程并画出大致图象.(说明所给图形小正方形的单位是1)

查看答案和解析>>


同步练习册答案