已知直线l:x=-1,点F(1.0).以F为焦点.l为相应的准线的椭圆短轴的一顶点为B.P为FB的中点. (Ⅰ)求P点的轨迹方程.并说明它是什么曲线, 为定点.求|PM|的最小值. 查看更多

 

题目列表(包括答案和解析)

已知直线l:x=my+1(m∈R)与椭圆数学公式相交于E,F两点,与x轴相交于点B.,且当m=0时,|EF|=数学公式
(1)求椭圆C的方程;
(2)设点A的坐标为(-3,0),直线AE,AF与直线x=3分别交于M,N两点.试判断以MN为直径的圆是否经过点B?并请说明理由.

查看答案和解析>>

已知抛物线C1:y2=4ax(a>0),椭圆C以原点为中心,以抛物线C1的焦点为右焦点,且长轴与短轴之比为
2
,过抛物线C1的焦点F作倾斜角为
π
4
的直线l,交椭圆C于一点P(点P在x轴上方),交抛物线C1于一点Q(点Q在x轴下方).
(1)求点P和Q的坐标;
(2)将点Q沿直线l向上移动到点Q′,使|QQ′|=4a,求过P和Q′且中心在原点,对称轴是坐标轴的双曲线的方程.

查看答案和解析>>

已知F(c,0)是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点,以坐标原点O为圆心,a为半径作圆P,过F垂直于x轴的直线与圆P交于A,B两点,过点A作圆P的切线交x轴于点M.若直线l过点M且垂直于x轴,则直线l的方程为
 
;若|OA|=|AM|,则椭圆的离心率等于
 

查看答案和解析>>

精英家教网已知点F椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点,点M在椭圆E上,以M为圆心的圆与x轴切于点F,与y轴交于A、B两点,且△ABM是边长为2的正三角形;又椭圆E上的P、Q两点关于直线l:y=x+n对称.
(I)求椭圆E的方程;
(II)当直线l过点(0,
1
5
)时,求直线PQ的方程;
(III)若点C是直线l上一点,且∠PCQ=
3
,求△PCQ面积的最大值.

查看答案和解析>>

已知定点F(2,0)和定直线l:x=-2,动圆P过定点F与定直线l相切,记动圆圆心P的轨迹为曲线C.
(1)求曲线C的方程.
(2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程.

查看答案和解析>>


同步练习册答案