椭圆上有一点P到其右焦点的距离是长轴两端点到右焦点的距离的等差中项.则P点的坐标是 查看更多

 

题目列表(包括答案和解析)

已知椭圆C:(a>b>0)的上顶点为A,左,右焦点分别为F1,F2,且椭圆C过点P(),以AP为直径的圆恰好过右焦点F2
(1)求椭圆C的方程;
(2)若动直线l与椭圆C有且只有一个公共点,试问:在x轴上是否存在两定点,使其到直线l的距离之积为1?若存在,请求出两定点坐标;若不存在,请说明理由.

查看答案和解析>>

已知椭圆C:(a>b>0)的上顶点为A,左,右焦点分别为F1,F2,且椭圆C过点P(),以AP为直径的圆恰好过右焦点F2
(1)求椭圆C的方程;
(2)若动直线l与椭圆C有且只有一个公共点,试问:在x轴上是否存在两定点,使其到直线l的距离之积为1?若存在,请求出两定点坐标;若不存在,请说明理由.

查看答案和解析>>

设F1、F2分别是椭圆C:+=1(a>b>0)的左、右焦点,l为左准线,A1、A2分别为其长轴的左、右端点.

(1)若椭圆上的点M(1,)到F1、F2的距离之和为4,求椭圆方程;

(2)有一个猜想:“设P(x1,y1)、Q(x2,y2)(y1y2≠0)是椭圆C上的任意两点,若P、F1、Q三点共线,则直线PA1、QA2、l共点.”你认为这个猜想能成立吗?请说明理由.

查看答案和解析>>

设F1,F2分别是椭圆C:的左右焦点.
(1)设椭圆C上的点到F1,F2两点距离之和等于,写出椭圆C的方程;
(2)设过(1)中所得椭圆上的焦点F2且斜率为1的直线与其相交于A,B,求△ABF1的面积;
(3)设点P是椭圆C 上的任意一点,过原点的直线l与椭圆相交于M,N两点,当直线PM,PN的斜率都存在,并记为kPN,kPN试探究kPN•kPN的值是否与点P及直线l有关,并证明你的结论.

查看答案和解析>>

给出下列命题:
①若椭圆的左右焦点分别为F1、F2,动点P满足|PF1|+|PF2|>6,则动点P不一定在该椭圆外部;
②以抛物线y2=2px(p>0)的焦点为圆心,以为半径的圆与该抛物线必有3个不同的公共点;
③双曲线与椭圆有相同的焦点;
④抛物线y2=4x上动点P到其焦点的距离的最小值≥1.
其中真命题的序号为    .(写出所有真命题的序号)

查看答案和解析>>


同步练习册答案