已知函数.若.则的值为 . 1 16.定义在区间上的奇函数.它在区间 上的图像是一条如图所示的线段.则 不等式的解集为 . 苍溪中学2007--2008学年度秋季第二学段考试 数学试题 命题人:樊永刚 时间:120分钟 分值:150分 查看更多

 

题目列表(包括答案和解析)

(本小题满分16分)

是定义在区间上的函数,其导函数为。如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质

(1)设函数,其中为实数。

(i)求证:函数具有性质; (ii)求函数的单调区间。

(2)已知函数具有性质。给定为实数,

,且

若||<||,求的取值范围。

查看答案和解析>>

(本小题满分16分)

定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.已知函数

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界的有界函数,求实数的取值范围。

(3)试定义函数的下界,举一个下界为3的函数模型,并进行证明。

查看答案和解析>>

(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。

定义:对函数,对给定的正整数,若在其定义域内存在实数,使得,则称函数为“性质函数”。

(1)判断函数是否为“性质函数”?说明理由;

(2)若函数为“2性质函数”,求实数的取值范围;

(3)已知函数的图像有公共点,求证:为“1性质函数”。

 

查看答案和解析>>

(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。
定义:对函数,对给定的正整数,若在其定义域内存在实数,使得,则称函数为“性质函数”。
(1)判断函数是否为“性质函数”?说明理由;
(2)若函数为“2性质函数”,求实数的取值范围;
(3)已知函数的图像有公共点,求证:为“1性质函数”。

查看答案和解析>>

(满分16分)已知定义域为的函数同时满足以下三个条件时,称为“友谊函数”,

[1] 对任意的,总有;  [2]

[3] 若,且,则有成立。

请解答下列各题:

(1)若已知为“友谊函数”,求的值;

(2)函数在区间上是否为“友谊函数”?并给出理由.

(3)已知为“友谊函数”,假定存在,使得,求证:.

查看答案和解析>>


同步练习册答案