题目列表(包括答案和解析)
(本小题满分16分)
设
是定义在区间
上的函数,其导函数为
。如果存在实数
和函数
,其中
对任意的
都有
>0,使得
,则称函数
具有性质
。
(1)设函数![]()
,其中
为实数。
(i)求证:函数
具有性质
; (ii)求函数
的单调区间。
(2)已知函数
具有性质
。给定
设
为实数,
,
,且
,
若|
|<|
|,求
的取值范围。
(本小题满分16分)
定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界.已知函数
;
(1)当
时,求函数
在
上的值域,并判断函数
在
上是否为有界函数,请说明理由;
(2)若函数
在
上是以3为上界的有界函数,求实数
的取值范围。
(3)试定义函数的下界,举一个下界为3的函数模型,并进行证明。
(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。
定义:对函数
,对给定的正整数
,若在其定义域内存在实数
,使得
,则称函数
为“
性质函数”。
(1)判断函数
是否为“
性质函数”?说明理由;
(2)若函数
为“2性质函数”,求实数
的取值范围;
(3)已知函数
与
的图像有公共点,求证:
为“1性质函数”。
(满分16分)已知定义域为
的函数
同时满足以下三个条件时,称
为“友谊函数”,
[1] 对任意的
,总有
; [2]
;
[3] 若
,
,且
,则有
成立。
请解答下列各题:
(1)若已知
为“友谊函数”,求
的值;
(2)函数
在区间
上是否为“友谊函数”?并给出理由.
(3)已知
为“友谊函数”,假定存在
,使得
且
,求证:
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com