解:(Ⅰ)由可得.两式相减得 又 ∴ 故是首项为.公比为得等比数列 ∴ (Ⅱ)设的公比为 由得.可得.可得.故可设 又 由题意可得 解得 ∵等差数列的各项为正.∴ ∴ ∴ 19 .解如图.连结...是等边三角形..在中.由余弦定理得 . 因此乙船的速度的大小为 答:乙船每小时航行海里 查看更多

 

题目列表(包括答案和解析)

解析几何是数与形的结合,由方程组的解的组数可得图形的位置关系.例如,当两个圆组成方程组无解时,说明两圆无公共点,此时两圆的位置关系为相离,但可能是外离也可能是内含.你能判断方程组其他解的组数与两圆的位置间的关系吗?

查看答案和解析>>

解析几何是数与形的结合,由方程组的解的组数可得图形的位置关系.例如,当两个圆组成方程组无解时,说明两圆无公共点,此时两圆的位置关系为相离,但可能是外离也可能是内含.你能判断方程组其他解的组数与两圆的位置间的关系吗?

查看答案和解析>>

解析几何是数与形的结合,由方程组的解的组数可得图形的位置关系.例如,当两个圆组成方程组无解时,说明两圆无公共点,此时两圆的位置关系为相离,但可能是外离也可能是内含.你能判断方程组其他解的组数与两圆的位置间的关系吗?

查看答案和解析>>

已知向量),向量

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。

(1)问中∵,∴,…………………1分

,得到三角关系是,结合,解得。

(2)由,解得,结合二倍角公式,和,代入到两角和的三角函数关系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②联立方程解得,5分

     ……………6分

(Ⅱ)∵,  …………7分

               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

将①代入②中,可得   ③    …………………4分

将③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,从而.      …………………8分

由(Ⅰ)知;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

综上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知 .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

综上可得                    …………………12分

(若用,又∵ ∴

 

查看答案和解析>>

为常数,离心率为的双曲线上的动点到两焦点的距离之和的最小值为,抛物线的焦点与双曲线的一顶点重合。(Ⅰ)求抛物线的方程;(Ⅱ)过直线为负常数)上任意一点向抛物线引两条切线,切点分别为,坐标原点恒在以为直径的圆内,求实数的取值范围。

【解析】第一问中利用由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

第二问中,

故直线的方程为,即

所以,同理可得:

借助于根与系数的关系得到即是方程的两个不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

(Ⅱ)设

故直线的方程为,即

所以,同理可得:

是方程的两个不同的根,所以

由已知易得,即

 

查看答案和解析>>


同步练习册答案