已知数列{an}满足:a1=1, an+1 - an =4n-2.则使an ≥163的正整数n的最小值是 查看更多

 

题目列表(包括答案和解析)

已知数列{an}满足a1=-1,an+1-2an-3=0数列{bn}满足bn=log2(an+3).
(1)求{bn}的通项公式;
(2)若数列{2n+1bn}的前n项的和为sn,试比较sn与8n2-4n的大小.

查看答案和解析>>

已知数列{an}满足a1=-1,an+1=
(3n+3)an+4n+6
n
,数列{bn}满足bn=
3n-1
an+2

(1)求证:数列{
an+2
n
}
为等比数列,并求数列{an}的通项公式.
(2)求证:当n≥2时,bn+1+bn+2+…+b2n
4
5
-
1
2n+1

(3)设数列{bn}的前n项和为{sn},求证:当n≥2时,sn2>2(
s2
2
+
s3
3
+…+
sn
n
)

查看答案和解析>>

已知数列{an}满足a1=1,a4+a6=18,且an+2-an+1=an+1-an(n∈N*).
(I)求数列{an}的通项公式;
(II)若cn=
1
a
2
n
+4n-2
,求数列{cn}的前n项和Tn

查看答案和解析>>

已知数列{an}满足a1=-1,an+1=
(3n+3)an+4n+6
n
,数列{bn}满足bn=
3n-1
an+2

(1)求证:数列{
an+2
n
}
为等比数列,并求数列{an}的通项公式.
(2)求证:当n≥2时,bn+1+bn+2+…+b2n
4
5
-
1
2n+1

(3)设数列{bn}的前n项和为{sn},求证:当n≥2时,sn2>2(
s2
2
+
s3
3
+…+
sn
n
)

查看答案和解析>>

已知数列{an}满足a1=-1,an+1-2an-3=0数列{bn}满足bn=log2(an+3).
(1)求{bn}的通项公式;
(2)若数列{2n+1bn}的前n项的和为sn,试比较sn与8n2-4n的大小.

查看答案和解析>>


同步练习册答案