已知点A,则 的顶点D的坐标为 A. C. 查看更多

 

题目列表(包括答案和解析)

已知点P是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
上的一动点,且点P与双曲线实轴两顶点连线的斜率之积为2,则双曲线的离心率为(  )

查看答案和解析>>

已知点P是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
上的一动点,且点P与双曲线实轴两顶点连线的斜率之积为2,则双曲线的离心率为(  )
A.
2
B.
3
C.2D.3

查看答案和解析>>

已知四边形ABCD的三个顶点A(0,2),B(-1,-2),C(3,1),且
BC
=2
AD
,则顶点D的坐标为(  )
A、(2,
7
2
)
B、(2,-
1
2
)
C、(3,2)
D、(1,3)

查看答案和解析>>

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1
x2
a2
+
y2
b2
=1
以抛物线y2=4
3
x
的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线x2=
1
mn
y
异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>

已知△ABC的顶点为A(1,1,1),B(0,-1,3),C(3,2,3),则△ABC的面积是
 

查看答案和解析>>


同步练习册答案