题目列表(包括答案和解析)
已知动圆M过定点P(0,m)(m>0),且与定直线
相切,动圆圆心M的轨迹方程为C,直线
过点P 交曲线C于A、B两点。
(1)若
交
轴于点S,求
的取值范围;
(2)若
的倾斜角为
,在
上是否存在点E使△ABE为正三角形? 若能,求点E的坐标;若不能,说明理由.
(08年潍坊市质检理) (12分)已知实数m>1,定点A(-m,0),B(m,0),S为一动点,点S与A,B两点连线斜率之积为![]()
(1)求动点S的轨迹C的方程,并指出它是哪一种曲线;
(2)当
时,问t取何值时,直线
与曲线C有且只有一个交点?
(3)在(2)的条件下,证明:直线l上横坐标小于2的点P到点(1,0)的距离与到直线x=2的距离之比的最小值等于曲线C的离心率.
设函数f(x)=-
x3+x2+(m2-1)x(x∈R),其中m>0.
(1)当m=1时,求曲线y=f(x)在(1,f(1))点处的切线的方程;
(2)求函数f(x)的单调区间与极值;
(3)已知函数g(x)=f(x)+
有三个互不相同的零点,求m的取值范围.
(本小题满分14分)
已知a∈R,函数
,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).(1)判断函数f(x)在
上的单调性;(2)是否存在实数
,使曲线y=g(x)在点x=x0处的切线与y轴垂直? 若存在,求出x0的值;若不存在,请说明理由.(3)若实数m,n满足m>0, n>0,求证:nnem≥mnen.
已知动圆C经过点(0,m) (m>0),且与直线y=-m相切,圆C被x轴截得弦长的最小值为1,记该圆的圆心的轨迹为E.
(Ⅰ)求曲线E的方程;
(Ⅱ)是否存在曲线C与曲线E的一个公共点,使它们在该点处有相同的切线?若存在,求出切线方程;若不存在,说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com