椭圆的两个焦点坐标分别为F1.F2(3.0).P是椭圆上任意一点.且PF1+PF2=2F1F2 ,则椭圆的标准方程是 . 查看更多

 

题目列表(包括答案和解析)

(2011•黄冈模拟)椭圆的两个焦点坐标分别为F1(-
3
,0)
F2(
3
,0)
,且椭圆过点(
3
,-
1
2

(1)求椭圆方程;
(2)过点(-
6
5
,0)
作直线l交该椭圆于M,N两点(直线l不与x轴重合),A为椭圆的左顶点,试判断∠MAN的大小是否为定值,并说明理由.

查看答案和解析>>

以知椭圆的两个焦点分别为F1(-c,0)和F2(c,0)(c>0),过点的直线与椭圆相交与A,B两点,且F1A∥F2B,|F1A|=2|F2B|.
(1)求椭圆的离心率;
(2)求直线AB的斜率;
(3)设点C与点A关于坐标原点对称,直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求的值.

查看答案和解析>>

以知椭圆的两个焦点分别为F1(-c,0)和F2(c,0)(c>0),过点的直线与椭圆相交与A,B两点,且F1A∥F2B,|F1A|=2|F2B|.
(1)求椭圆的离心率;
(2)求直线AB的斜率;
(3)设点C与点A关于坐标原点对称,直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求的值.

查看答案和解析>>

以知椭圆的两个焦点分别为F1(-c,0)和F2(c,0)(c>0),过点的直线与椭圆相交与A,B两点,且F1A∥F2B,|F1A|=2|F2B|.
(1)求椭圆的离心率;
(2)求直线AB的斜率;
(3)设点C与点A关于坐标原点对称,直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求的值.

查看答案和解析>>

以知椭圆的两个焦点分别为F1(-c,0)和F2(c,0)(c>0),过点的直线与椭圆相交与A,B两点,且F1A∥F2B,|F1A|=2|F2B|.
(1)求椭圆的离心率;
(2)求直线AB的斜率;
(3)设点C与点A关于坐标原点对称,直线F2B上有一点H(m,n)(m≠0)在△AF1C的外接圆上,求的值.

查看答案和解析>>


同步练习册答案