题目列表(包括答案和解析)
设数列
前
项和为
,且
。其中
为实常数,
且
。
(1)求证:
是等比数列;
(2)若数列
的公比满足
且
,求
的
通项公式;
(3)若
时,设
,是否存在最大的正整数
,使得对任意
均有
成立,若存在求出
的值,若不存在请说明理由。
设数列
前
项和为
,且
。其中
为实常数,
且
。
(1) 求证:
是等比数列;
(2) 若数列
的公比满足
且
,求
的
通项公式;
(3)若
时,设
,是否存在最大的正整数
,使得对任意
均有
成立,若存在求出
的值,若不存在请说明理由。
设等比数列
的首项为
,公比为
为正整数),且满足
是
与
的等差中项;数列
满足
。
(1) 求数列
的通项公式;
(2) 试确定实数
的值,使得数列
为等差数列;
(3) 当数列
为等差数列时,对每个正整数
,在
和
之间插入
个2,得到一个新数列
。设
是数列
的前
项和,试求满足
的所有正整数
。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com