22.设抛物线的焦点F.过点F任作一直线与抛物线相交于两点. (1)求证:为定值. (2)是否存在定直线.使得对于上任一点M.直线MA.MF.MB的斜率总成等差数列?若存在.求出直线的方程;若不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

设抛物线C:x2=2py(p>0),过它的焦点F且斜率为1的直线与抛物线C相交于A,B两点,已知|AB|=2.
(1)求抛物线C的方程;
(2)已知t是一个负实数,P是直线y=t上一点,过P作直线l1与l2,使l1⊥l2,若对任意的点P,总存在这样的直线l1与l2,使l1,l2与抛物线均有公共点,求t的取值范围.

查看答案和解析>>

设抛物线C:x2=2py(p>0),过它的焦点F且斜率为1的直线与抛物线C相交于A,B两点,已知|AB|=2.
(1)求抛物线C的方程;
(2)已知t是一个负实数,P是直线y=t上一点,过P作直线l1与l2,使l1⊥l2,若对任意的点P,总存在这样的直线l1与l2,使l1,l2与抛物线均有公共点,求t的取值范围.

查看答案和解析>>

设抛物线C:x2=2py(p>0),过它的焦点F且斜率为1的直线与抛物线C相交于A,B两点,已知|AB|=2.
(1)求抛物线C的方程;
(2)已知t是一个负实数,P是直线y=t上一点,过P作直线l1与l2,使l1⊥l2,若对任意的点P,总存在这样的直线l1与l2,使l1,l2与抛物线均有公共点,求t的取值范围.

查看答案和解析>>

设抛物线C:y2=2px,AB是过焦点F(
p
2
,0)
的弦,设A(x1,y1),B(x2,y2),O(0,0),l为准线,给出以下结论:
①4x1x2=p2;②以AB为直径的圆与准线l相离;③
1
|AF|
+
1
|BF|
=
1
p
;  ④设准线l与x轴交于点N,则FN平分∠ANB;⑤过准线l上任一点M作抛物线的切线,则切点的连线必过焦点.则以上结论正确的是
①④⑤
①④⑤
将正确结论的序号填上去)

查看答案和解析>>

已知抛物线方程C:y2=2px(p>0),点F为其焦点,点N(3,1)在抛物线C的内部,设点M是抛物线C上的任意一点,|
MF
|+|
MN
|
的最小值为4.
(1)求抛物线C的方程;
(2)过点F作直线l与抛物线C交于不同两点A、B,与y轴交于点P,且
PF
=λ1
FA
=λ2
FB
,试判断λ12是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.

查看答案和解析>>


同步练习册答案