题目列表(包括答案和解析)
已知函数
,数列
的项满足:
,(1)试求![]()
(2) 猜想数列
的通项,并利用数学归纳法证明.
【解析】第一问中,利用递推关系
, ![]()
, ![]()
第二问中,由(1)猜想得:
然后再用数学归纳法分为两步骤证明即可。
解: (1)
,
![]()
,
…………….7分
(2)由(1)猜想得:![]()
(数学归纳法证明)i)
,
,命题成立
ii) 假设
时,
成立
则
时,![]()
![]()
![]()
综合i),ii) :
成立
已知函数
定义在区间
,对任意
,恒有
成立,又数列
满足![]()
(I)在(-1,1)内求一个实数t,使得![]()
(II)求证:数列
是等比数列,并求
的表达式;
(III)设
,是否存在
,使得对任意
,
恒成立?若存在,求出m的最小值;若不存在,请说明理由。
已知函数
的图象经过坐标原点,且
的前![]()
(I)求数列
的通项公式;
(II)若数列
满足
,求数列
的前n项和。
(Ⅲ)设
,
,其中
,试比较
与
的大小,并证明你的结论。
已知函数
当
时,
取得极小值
。
(1) 求
的值;
(2) 设直线
,曲线
,若直线
与曲线
同时满足下列两个条件:
(i) 直线
与曲线
相切且至少有两个切点;
(ii) 对任意
都有
,则称直线
为曲线
的“上夹线”。试证明:直线
是曲线
的“上夹线”。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com