题目列表(包括答案和解析)

 0  168586  168594  168600  168604  168610  168612  168616  168622  168624  168630  168636  168640  168642  168646  168652  168654  168660  168664  168666  168670  168672  168676  168678  168680  168681  168682  168684  168685  168686  168688  168690  168694  168696  168700  168702  168706  168712  168714  168720  168724  168726  168730  168736  168742  168744  168750  168754  168756  168762  168766  168772  168780  447348 

3.频率为的光子,具有的能量为、动量为。将这个光子打在处于静止状态的电子上,光子将偏离原运动方向,这种现象称光子的散射.下列关于光子散射说法中正确的是(  )

A.光子改变原来的运动方向,且传播速度变小

B.光子由于在与电子碰撞中获得能量,因而频率增大

C.由于受到电子碰撞,散射后的光子波长小于入射光子的波长

D.由于受到电子碰撞,散射后的光子频率小于入射光子的频率

答案:D

试题详情

2.为了观察晶体的原子排列,可以采用下列方法:(1)用分辨率比光学显微镜更高的电子显微镜成像(由于电子的物质波波长很短,能防止发生明显衍射现象,因此电子显微镜的分辨率高);(2)利用X射线或中子束得到晶体的衍射图样,进而分析出晶体的原子排列,则下列分析中正确的是(  )

A.电子显微镜所利用的电子的物质波的波长比原子尺寸小得多

B.电子显微镜中电子束运动的速度应很小

C.要获得晶体的X射线衍射图样,X射线波长要远小于原子的尺寸

D.中子的物质波的波长可以与原子尺寸相当

答案:AD 

试题详情

1.2006年度诺贝尔物理学奖授予了两名美国科学家,以表彰他们发现了宇宙微波背景辐射的黑体谱形状及其温度在不同方向上的微小变化。他们的出色工作被誉为是宇宙学研究进入精密科学时代的起点,下列与宇宙微波背景辐射黑体谱相关的说法中正确的是(  )

A.微波是指波长在m到10m之间的电磁波

B.微波和声波一样都只能在介质中传播

C.黑体的热辐射实际上是电磁辐射

D.普朗克在研究黑体的热辐射问题中提出了能量子假说

解析:ACD  微波是电磁波,其传播不需要介质,当然也可以在介质中传播,A对、B错;由黑体辐射的知识可知C、D正确。

点评:该题比较容易,考查了微波和黑体辐射的问通。只要掌握基本概念及规律,即可解决问题(Ⅰ、识记、易)

命题思路:本题主要考查学生对课本上描述的物理现象的掌握程度和理解分析能力,中等难度.

试题详情

20. (17分)水平固定的两根足够长的平行光滑杆ABCD,两杆之间的距离为d,两杆上各穿有质量分别为m1=1kg和m2=2kg的小球,两小球之间用一轻质弹簧连接,弹簧的自由长度也为d.开始时,弹簧处于自然伸长状态,两小球静止,如图(a)所示.现给小球m1一沿杆向右方向的瞬时初速度,以向右为速度的正方向,得到m1v-t图象为如图(b)所示的周期性图线(以小球m1获得瞬时速度开始计时).

(1)求出在以后的过程中m2的速度范围;   (2)在图(b)中作出小球m2v-t图像;

(3)若在光滑杆上小球m2右侧较远处还穿有另一质量为m3=3kg的小球,该小球在某一时刻开始向左匀速运动,速率为v=4m/s,它将遇到小球m2并与m2结合在一起运动,求:在以后的过程中,弹簧弹性势能的最大值的范围?

图(b)
 
 

试题详情

19. (16分) 如图所示,两个共轴金属圆筒轴线O与纸面垂直,内筒筒壁为网状(带电粒子可无阻挡地穿过网格),半径为R。内圆筒包围的空间存在一沿圆筒轴线方向指向纸内的匀强磁场,磁场的磁感应强度的大小为B。当两圆筒之间加上一定电压后,在两圆筒间的空间可形成沿半径方向这指向轴线的电场。一束质量为m、电量为q的带正电的粒子自内圆筒壁上的A点沿内圆筒半径射入磁场,经磁场偏转进入电场后所有粒子都刚好不与外筒相碰。试问:

(1)要使粒子在最短时间内再次到达A点,粒子的速度应是多少?

再次到达A点在磁场中运动的最短时间是多长?

(2)要使粒子在磁场中围绕圆筒的轴线O运动一周时恰能返回A点,则内、外筒之间的电压需满足什么条件?

试题详情

18.(14分)质量为m的登月器与航天飞机连接在一起,随航天飞机绕月球做半径为3R( R为月球半径)的圆周运动。当它们运行到轨道的A点时,登月器被弹离, 航天飞机速度变大,登月器速度变小且仍沿原方向运动,随后登月器沿椭圆登上月球表面的B点,在月球表面逗留一段时间后,经快速起动仍沿原椭圆轨道回到分离点A与航天飞机实现对接。已知月球表面的重力加速度为g。科学研究表明,天体在椭圆轨道上运行的周期的平方与轨道半长轴的立方成正比。试求:

(1)登月器与航天飞机一起在圆周轨道上绕月球运行的周期是多少?

(2)若登月器被弹射后,航天飞机的椭圆轨道长轴为8R,则为保证登月器能顺利返回A点,登月器可以在月球表面逗留的时间是多少?

试题详情

17. (14分)如图所示,cd fe是与水平面成θ角的光滑平行金属导轨,导轨间的宽度为D,电阻不计。质量为m、电阻为r的金属棒ab平行于cf且与cf相距为L,棒ab与导轨接触良好,在导轨间存在垂直导轨平面向下的匀强磁场,

磁感应强度随时间的变化关系为B=Kt(K为定值且大于零)。在cf之间连接一额定电压为U、额定功率为P的灯泡。当棒ab保持静止不动时,灯泡恰好正常发光。

(1)求棒ab静止不动时,K值的大小。

(2)为了保持棒ab静止,现给其施加了一个平行导轨的力。求这个力的表达式,并分析这个力的方向。

试题详情

16. (13分)如图所示,在范围很大的水平向右的匀强电场中,一个带电量为-q的油滴,从A点以速度υ竖直向上射入电场.已知油滴质量为m,重力加速度为g,若要油滴运动到轨迹的最高点时,它的速度大小恰好为υ.则:(1)所加电场的电场强度E为多大?

 (2)油滴从A点到最高点的过程中电势能改变了多少?

试题详情

15.(12分)如图所示,质量为m的小车,静止在光滑的水平地面上,车长为L0,现给小车施加一个水平向右的恒力F,使小车向右做匀加速运动,与此同时在小车的正前方S0处的正上方H高处,有一个可视为质点的小球从静止开始做自由落体运动(重力加速度为g),问恒力F满足什么条件小球可以落到小车上?

试题详情

14.(1)( 8分)某学习小组为测量一铜芯电线的电阻率,他们截取了一段电线,用米尺测出其长度为L,用螺旋测微器测得其直径为D,用多用电表测其电阻值约为2Ω ,为提高测量的精度,该小组的人员从下列器材中挑选了一些元件,设计了一个电路,重新测量这段导线(图中用Rx表示)的电阻.

A.电源E(电动势为3.0V ,内阻不计)

B.电压表V1(量程为0 -3.0V ,内阻约为2kΩ)

C.电压表V2(量程为0 -15.0V ,内阻约为6kΩ)

D.电流表A1(量程为0-0.6A ,内阻约为1Ω)

E.电流表A2(量程为0-3.0A ,内阻约为0.1Ω)

F.滑动变阻器R1 (最大阻值10Ω,额定电流2.0A)G.滑动变阻器R2(最大阻值1kΩ,额定电流1.0A)

H.定值电阻R0(阻值为3Ω) I.开关S一个,导线若干

①右图是该实验小组用千分尺对铜线直径的某次测量,其读数是     

②为提高实验精度,请你为该实验小组设计电路图,并画在右侧的方框中。

③实验时电压表选_______,电流表选_______,滑动变阻器选________(只填代号).

④某次测量时,电压表示数为U,电流表示数为I,则该铜芯线材料的电阻率的表达式为:ρ=_____。

(2)(4分)理想变压器是指在变压器变压的过程中,线圈和铁心不损耗能量、磁场被束缚在铁心内不外漏的变压器。现有一个理想变压器有一个原线圈(匝数为n1)和两副线圈(匝数分别为n2n3)。甲、乙、丙同学想探究这个理想变压器的原、副线圈两端的电压与线圈匝数的关系。

①甲同学的猜想是U1:U2:U3=n1:n2:n3;乙同学的猜想是U1:U2:U3=n3:n2:n1;丙同学的猜想是U1n1=U2n2+U3n3.你认为猜想合理的同学是 ___ ,你做出上述判断所依据的物理规律是      

②为了验证理论推导的正确性,可以通过实验来探究。为保证实验安全、有效地进行,应选用         电源。

试题详情


同步练习册答案