又由(1)知a<.b<.则 查看更多

 

题目列表(包括答案和解析)

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

在△ABC中,a,b,c为三角形的三边,
(1)我们知道,△ABC为直角三角形的充要条件是存在一条边的平方等于另两边的平方和.类似地,试用三边的关系分别给出△ABC为锐角三角形的充要条件以及△ABC为钝角三角形的充要条件;(不需证明)
(2)由(1)知,若a2+b2=c2,则△ABC为直角三角形.试探究当三边a,b,c满足an+bn=cn(n∈N,n>2)时三角形的形状,并加以证明.

查看答案和解析>>

已知△ABC中,(b+a)(sinB-sinA)=asinB,又cos2C+cosC=1-cos(A-B).
(I)试判断△ABC的形状;
(II)求cosC的值.

查看答案和解析>>

设函数f(x)=在[1,+∞上为增函数.  

(1)求正实数a的取值范围;

(2)比较的大小,说明理由;

(3)求证:(n∈N*, n≥2)

【解析】第一问中,利用

解:(1)由已知:,依题意得:≥0对x∈[1,+∞恒成立

∴ax-1≥0对x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

(2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上为增函数,

∴n≥2时:f()=

  

 (3)  ∵   ∴

 

查看答案和解析>>

已知命题p:函数的值域为R,命题q:函数

 是减函数。若p或q为真命题,p且q为假命题,则实数a的取值范围是

A.a≤1               B.a<2            C.1<a<2          D.a≤1或a≥2

 

查看答案和解析>>


同步练习册答案