C.8元 D.8.5元 查看更多

 

题目列表(包括答案和解析)

甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为t(cm),相关行业质检部门规定:若t∈(2.9,3.1],则该零件为优等品;若t∈(2.8,2.9]∪(3.1,3.2],则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:
尺寸 [2.7,2.8] (2.8,2.9] (2.9,3.0] (3.0,3.1] (3.1,3.2] (3.2,3.3]
甲机床零件频数 2 3 20 20 4 1
乙机床零件频数 3 5 17 13 8 4
(Ⅰ)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元.试根据样本估计总体的思想,估算甲机床生产一件零件的利润的平均值;
(Ⅱ)对于这两台机床生产的零件,在排除其它因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由.
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
.参考数据:
P(K2≥k0 0.25 0.15 0.10 0.05 0.025 0.010
k0 1.323 2.072 2.706 3.841 5.024 6.635

查看答案和解析>>

PQ为两个非空实数集合,定义集合P+Q={a+b|aP,bQ},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是(   )

A.9                B.8                C.7                D.6

查看答案和解析>>

设P、Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q}.若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是(    )

A.9                   B.8               C.7                 D.6

查看答案和解析>>

设P、Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是(    )

A.9               B.8            C.7             D.6

查看答案和解析>>

设P、Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是(    )

A.9                     B.8                       C.7                D.6

查看答案和解析>>

CACD CCBA

9、      10、2:1      11、    12、      13、4

14、a<-1   15、

 

16、

17、解:(I)依题意

                                                            …………2分

      

                                                                    …………4分

         bn=8+8×(n-1)=8n                                   …………5分

(II)                   …………6分

                

 

                                                    …………12分

18、(1)3

(2)底面边长为2,高为4是,体积最大,最大体积为16

19、

略解、(1)因为f′(x)=3ax2+2x-1,依题意存在(2,+∞)的非空子区间使3ax2+2x-1>0成立,即 在x∈(2,+∞)某子区间上恒成立,令h(x)=,求得h(x)的最小值为,故

(2)由已知a>0

令f′(x)=3ax2+2x-1>0

故f(x)在区间()上是减函数, 即f(x)在区间()上恒大于零。故当a>0时,函数在f(x)在区间()上不存在零点

20、(1)f(1)=3………………………………………………………………………………(1分)

        f(2)=6………………………………………………………………………………(2分)

        当x=1时,y=2n,可取格点2n个;当x=2时,y=n,可取格点n个

        ∴f(n)=3n…………………………………………………………………………(4分)

  

   (2)………………………………………………(9分)

       

        ∴T1<T2=T3>T4>…>Tn

        故Tn的最大值是T2=T3=

        ∴m≥………………………………………………………………()

 

 

21、解:(Ⅰ)设,

,      …………………2分

                   …………………3分

.                 ………………………………………………4分

∴动点M的轨迹C是以O(0,0)为顶点,以(1,0)为焦点的抛物线(除去原点).

             …………………………………………5分

(Ⅱ)解法一:(1)当直线垂直于轴时,根据抛物线的对称性,有

                                                         ……………6分

(2)当直线轴不垂直时,依题意,可设直线的方程为,则AB两点的坐标满足方程组

消去并整理,得

,

.   ……………7分

设直线AEBE的斜率分别为,则:

.  …………………9分

,

,

.

综合(1)、(2)可知.                  …………………10分

解法二:依题意,设直线的方程为,则AB两点的坐标满足方程组:

消去并整理,得

,

. ……………7分

设直线AEBE的斜率分别为,则:

.  …………………9分

,

,

.        ……………………………………………………10分

(Ⅲ)假设存在满足条件的直线,其方程为AD的中点为AD为直径的圆相交于点FGFG的中点为H,则点的坐标为.

,

,

 .                  …………………………12分

,

,得

此时,.

∴当,即时,(定值).

∴当时,满足条件的直线存在,其方程为;当时,满足条件的直线不存在.    

 

 


同步练习册答案