已知圆过点,且与:关于直线对称. 查看更多

 

题目列表(包括答案和解析)

(14分)已知圆过点且与圆M:关于直线对称

  (1)判断圆与圆M的位置关系,并说明理由;

  (2)过点作两条相异直线分别与圆相交于

   ①若直线与直线互相垂直,求的最大值;

   ②若直线与直线轴分别交于,且,为坐标原点,试判断直线是否平行?请说明理由.

 

查看答案和解析>>

(14分)已知圆过点且与圆M:关于直线对称
(1)判断圆与圆M的位置关系,并说明理由;
(2)过点作两条相异直线分别与圆相交于
①若直线与直线互相垂直,求的最大值;
②若直线与直线轴分别交于,且,为坐标原点,试判断直线是否平行?请说明理由.

查看答案和解析>>

已知圆C经过点A(1,2)、B(3,0),并且直线m:2x-3y=0平分圆C.
(1)求圆C的方程;
(2)过点D(0,3),且斜率为k的直线l与圆C有两个不同的交点E、F,若|EF|≥2
3
,求k的取值范围;
(3)若圆C关于点(
3
2
,1)
对称的曲线为圆Q,设M(x1,y1)、P(x2,y2)(x1≠±x2)是圆Q上的两个动点,点M关于原点的对称点为M1,点M关于x轴的对称点为M2,如果直线PM1、PM2与y轴分别交于(0,m)和(0,n),问m•n是否为定值?若是求出该定值;若不是,请说明理由.

查看答案和解析>>

已知圆C过点P(1,1),且与圆M:(x+2)2+(y+2)2=r2(r>0)关于x+y+2=0对称.
(Ⅰ)求圆C的方程;
(Ⅱ)过点(
2
,2)作圆C的切线,求切线的方程;
(Ⅲ)过点P作两条相异直线分别与圆C相交A,B两点,设直线PA和直线PB的斜率分别为k,-k,O为坐标原点,试判断直线OP和直线AB是否平行?请说明理由.

查看答案和解析>>

(12分)已知圆关于直线对称,圆心在第二象限,半径为

⑴求圆C的方程;

    ⑵已知不过原点的直线与圆C相切,且轴、轴上的截距相等,求直线的方程。

 

 

查看答案和解析>>

一、选择题:

1.C   2.D   3.C   4.D   5.C   6.A   7.A   8.D   9.D   10.B

二、填空题:

11.       12.     13.   14.7    15.   16.      17.   

18. 答案不惟一,如,或等   19. 60     20.    21.   

22.   23.   24.

三、解答题:

25 解: (Ⅰ)因为,∴,则

(Ⅱ)由,得,∴

由正弦定理,得,∴的面积为

26解:(Ⅰ)因为,,且,

所以

,所以四边形为平行四边形,则

,故点的位置满足

(Ⅱ)证: 因为侧面底面,,且,

所以,则

,且,所以

,所以

27解:(Ⅰ)因为,所以的面积为

设正方形的边长为,则由,得,

解得,则

所以,则

(Ⅱ)因为,所以

当且仅当时取等号,此时.所以当长为时,有最小值1

28解:(Ⅰ)设圆心,则天星教育网
www.tesoon.com,解得

则圆的方程为,将点的坐标代入得,故圆的方程为

(Ⅱ)设,则,且

==,

所以的最小值为(可由线性规划或三角代换求得)

(Ⅲ)由题意知, 直线和直线的斜率存在,且互为相反数,故可设,

,由,

因为点的横坐标一定是该方程的解,故可得

同理,,

所以=

所以,直线一定平行

29解:(Ⅰ)因为

;由,

所以上递增,在上递减

上为单调函数,则

(Ⅱ)证:因为上递增,在上递减,

所以处取得极小值

 又,所以上的最小值为

从而当时,,即

(Ⅲ)证:因为,所以即为,

,从而问题转化为证明方程=0

上有解,并讨论解的个数

因为www.tesoon.com,,

所以  ①当时,,

所以上有解,且只有一解

②当时,,但由于,

所以上有解,且有两解

③当时,,所以上有且只有一解;

时,,

所以上也有且只有一解

综上所述, 对于任意的,总存在,满足,

且当时,有唯一的适合题意;

时,有两个适合题意

30解:(Ⅰ)由题意得,,所以=

(Ⅱ)证:令,,则=1

所以=(1),=(2),

(2)―(1),得=,

化简得(3)

(4),(4)―(3)得

在(3)中令,得,从而为等差数列

(Ⅲ)记,公差为,则=

,天星教育网
www.tesoon.com

,当且仅当,即时等号成立

 


同步练习册答案