题目列表(包括答案和解析)
已知函数
的最小值为0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若对任意的
有
≤
成立,求实数
的最小值;
(Ⅲ)证明
(
).
【解析】(1)解:
的定义域为![]()
![]()
由
,得![]()
当x变化时,
,
的变化情况如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
极小值 |
|
因此,
在
处取得最小值,故由题意
,所以![]()
(2)解:当
时,取
,有
,故
时不合题意.当
时,令
,即![]()
![]()
令
,得![]()
①当
时,
,
在
上恒成立。因此
在
上单调递减.从而对于任意的
,总有
,即
在
上恒成立,故
符合题意.
②当
时,
,对于
,
,故
在
上单调递增.因此当取
时,
,即
不成立.
故
不合题意.
综上,k的最小值为
.
(3)证明:当n=1时,不等式左边=
=右边,所以不等式成立.
当
时,![]()
![]()
![]()
在(2)中取
,得
,
从而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
综上,
,![]()
已知函数
。
(1)求函数的最小正周期和最大值;
(2)求函数的增区间;
(3)函数的图象可以由函数
的图象经过怎样的变换得到?
【解析】本试题考查了三角函数的图像与性质的运用。第一问中,利用
可知函数的周期为
,最大值为
。
第二问中,函数
的单调区间与函数
的单调区间相同。故当
,解得x的范围即为所求的区间。
第三问中,利用图像将
的图象先向右平移
个单位长度,再把横坐标缩短为原来的
(纵坐标不变),然后把纵坐标伸长为原来的
倍(横坐标不变),再向上平移1个单位即可。
解:(1)函数
的最小正周期为
,最大值为
。
(2)函数
的单调区间与函数
的单调区间相同。
即![]()
所求的增区间为
,![]()
即![]()
所求的减区间为
,
。
(3)将
的图象先向右平移
个单位长度,再把横坐标缩短为原来的
(纵坐标不变),然后把纵坐标伸长为原来的
倍(横坐标不变),再向上平移1个单位即可。
函数
在同一个周期内,当
时,
取最大值1,当
时,
取最小值
。
(1)求函数的解析式![]()
(2)函数
的图象经过怎样的变换可得到
的图象?
(3)若函数
满足方程
求在
内的所有实数根之和.
【解析】第一问中利用![]()
又因![]()
又
函数![]()
第二问中,利用
的图象向右平移
个单位得
的图象
再由
图象上所有点的横坐标变为原来的
.纵坐标不变,得到
的图象,
第三问中,利用三角函数的对称性,
的周期为![]()
在
内恰有3个周期,
并且方程
在
内有6个实根且![]()
同理,
可得结论。
解:(1)![]()
又因![]()
又
函数![]()
(2)
的图象向右平移
个单位得
的图象
再由
图象上所有点的横坐标变为原来的
.纵坐标不变,得到
的图象,
(3)
的周期为![]()
在
内恰有3个周期,
并且方程
在
内有6个实根且![]()
同理,![]()
故所有实数之和为![]()
(本小题满分12分)已知f (x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中x的系数为11.
(1)求x2的系数的最小值;
(2)当x2的系数取得最小值时,求f (x)展开式中x的奇次幂项的系数之和.
解: (1)由已知
+2
=11,∴m+2n=11,x2的系数为
+22
=
+2n(n-1)=
+(11-m)(
-1)=(m-
)2+
.
∵m∈N*,∴m=5时,x2的系数取最小值22,此时n=3.
(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,
∴f (x)=(1+x)5+(1+2x)3.设这时f (x)的展开式为f (x)=a0+a1x+a2x2+…+a5x5,
令x=1,a0+a1+a2+a3+a4+a5=25+
33,
令x=-1,a0-a1+a2-a3+a4-a5=-1,
两式相减得2(a1+a3+a5)=60, 故展开式中x的奇次幂项的系数之和为30.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com