题目列表(包括答案和解析)
已知函数
,
(1)求函数
的定义域;
(2)求函数
在区间
上的最小值;
(3)已知
,命题p:关于x的不等式
对函数
的定义域上的任意
恒成立;命题q:指数函数
是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.
【解析】第一问中,利用由
即![]()
![]()
第二问中,
,
得:
![]()
,
![]()
第三问中,由在函数
的定义域上
的任意
,
,当且仅当
时等号成立。当命题p为真时,
;而命题q为真时:指数函数
.因为“p或q”为真,“p且q”为假,所以
当命题p为真,命题q为假时;当命题p为假,命题q为真时分为两种情况讨论即可 。
解:(1)由
即![]()
![]()
(2)
,
得:
![]()
,
![]()
(3)由在函数
的定义域上
的任意
,
,当且仅当
时等号成立。当命题p为真时,
;而命题q为真时:指数函数
.因为“p或q”为真,“p且q”为假,所以
当命题p为真,命题q为假时,![]()
当命题p为假,命题q为真时,
,
所以![]()
我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式
。人们还用过一些类似的近似公式。根据
=3.14159…..判断,下列近似公式中最精确的一个是
![]()
如图,长方体
中,底面
是正方形,
是
的中点,
是棱
上任意一点。
(Ⅰ)证明:![]()
;
(Ⅱ)如果
=2 ,
=
,
, 求
的长。
![]()
【解析】(Ⅰ)因底面是正方形,故![]()
,又侧棱垂直底面,可得
,而
,所以
面
,因
,所以
面
,又
面
,所以![]()
;
(Ⅱ)因
=2 ,
=
,,可得
,
,设
,由
得
,即
,解得
,即
的长为
。
求圆心
在直线
上,且经过原点及点
的圆
的标准方程.
【解析】本试题主要考查的圆的方程的求解,利用圆心和半径表示圆,首先设圆心C的坐标为(
),然后利用
,得到
,从而圆心
,半径
.可得原点 标准方程。
解:设圆心C的坐标为(
),...........2分
则
,即
,解得
........4分
所以圆心
,半径
...........8分
故圆C的标准方程为:
.......10分
![]()
在
中,
是三角形的三内角,
是三内角对应的三边,已知
成等差数列,
成等比数列
(Ⅰ)求角
的大小;
(Ⅱ)若
,求
的值.
【解析】第一问中利用依题意
且
,故![]()
第二问中,由题意
又由余弦定理知
![]()
,得到
,所以
,从而得到结论。
(1)依题意
且
,故
……………………6分
(2)由题意
又由余弦定理知
…………………………9分
即
故![]()
代入
得![]()
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com