如:如果直线L与抛物线=2px相交于A.B两点.P是抛物线上一定点(,).且PA⊥PB.求证:直线L过定点(+2p,-)(评分:提出问题得4分.解答正确得3分) 查看更多

 

题目列表(包括答案和解析)

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率为e,右顶点为A,左、右焦点分别为F1、F2,点E为右准线上的动点,∠AEF2的最大值为θ.
(1)若双曲线的左焦点为F1(-4,0),一条渐近线的方程为3x-2y=0,求双曲线的方程;
(2)求sinθ(用e表示);
(3)如图,如果直线l与双曲线的交点为P、Q,与两条渐近线的交点为P'、Q',O为坐标原点,求证:
OP
+
OQ
=
OP′
+
OQ′

查看答案和解析>>

(2011•徐汇区三模)定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆C1
x2
4
+y2=1

(1)若椭圆C2
x2
16
+
y2
4
=1
,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且短半轴长为b的椭圆Cb的方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围?
(3)如图:直线l与两个“相似椭圆”
x2
a2
+
y2
b2
=1
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分别交于点A,B和点C,D,证明:|AC|=|BD|

查看答案和解析>>

已知双曲线的离心率为e,右顶点为A,左、右焦点分别为F1、F2,点E为右准线上的动点,∠AEF2的最大值为θ.
(1)若双曲线的左焦点为F1(-4,0),一条渐近线的方程为3x-2y=0,求双曲线的方程;
(2)求sinθ(用e表示);
(3)如图,如果直线l与双曲线的交点为P、Q,与两条渐近线的交点为P'、Q',O为坐标原点,求证:

查看答案和解析>>

在平面直线坐标系xOy中,直线l与抛物y2=2x相交于AB两点.

(1)求证:“如果直线l过点(3,0),那么=3”是真命题.

(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.

查看答案和解析>>

已知双曲线的离心率为e,右顶点为A,左、右焦点分别为F1、F2,点E为右准线上的动点,∠AEF2的最大值为θ.
(1)若双曲线的左焦点为F1(-4,0),一条渐近线的方程为3x-2y=0,求双曲线的方程;
(2)求sinθ(用e表示);
(3)如图,如果直线l与双曲线的交点为P、Q,与两条渐近线的交点为P'、Q',O为坐标原点,求证:

查看答案和解析>>


同步练习册答案