例3从某批产品中.有放回地抽取产品二次.每次随机抽取1件.假设事件:“取出的2件产品中至多有1件是二等品 的概率. 查看更多

 

题目列表(包括答案和解析)

某港口海水的深度(米)是时间(时)()的函数,记为:

已知某日海水深度的数据如下:

(时)

0

3

6

9

12

15

18

21

24

(米)

10.0

13.0

9.9

7.0

10.0

13.0

10.1

7.0

10.0

经长期观察,的曲线可近似地看成函数的图象

(I)试根据以上数据,求出函数的振幅、最小正周期和表达式;

(II)一般情况下,船舶航行时,船底离海底的距离为米或米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可)。某船吃水深度(船底离水面的距离)为米,如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)

【解析】第一问中利用三角函数的最小正周期为: T=12   振幅:A=3,b=10,  

第二问中,该船安全进出港,需满足:即:          ∴  ,可解得结论为得到。

 

查看答案和解析>>

某港口水深y(米)是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t),下面是某日水深的数据:
t(小时) 0 3 6 9 12 15 18 21 24
y(米) 10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0
经长期观察:y=f(t)的曲线可近似看成函数y=Asinωt+b的图象(A>0,ω>0).
(1)求函数y=f(t)的近似表达式;
(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的.某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问:它至多能在港内停留多长时间?

查看答案和解析>>

例3.设a>0,a≠1,f(x)=loga(x+
x2-1
)
,x≥1,
求函数f(x)的反函数及其定义域.

查看答案和解析>>

例3:f(x)=loga
x+bx-b
(a>0)
b>0a≠1)求f(x)的定义域及奇偶性.

查看答案和解析>>

某一电视频道在一天内有x次插播广告的时段,一共播放了y条广告,第1次播放了1条和余下的y-1条的
1
8
,第2次播放了2条以及余下的
1
8
,第3次播放了3条以及余下的
1
8
,以后每次按此规律插播广告,在第x次播放了余下的x条(x>1).
(1)设第k次播放后余下ak条,这里a0=y,ax=0,求ak与ak-1的递推关系式.
(2)求这家电视台这一天内播放广告的时段x与广告的条数y.

查看答案和解析>>


同步练习册答案