3.点P关于原点的对称点是Q.则线段PQ的长度是 A.12 B.5 C.13 D.26 查看更多

 

题目列表(包括答案和解析)

已知抛物线顶点D (0,
1
8
),且经过点A(1,
17
8
).
(1)求这条抛物线的解析式;
(2)点F是坐标原点O关于该抛物线顶点的对称点,坐标为(0,
1
4
).我们可以用以下方法求线段FA的长度;过点A作AA1⊥x轴,过点F作x轴的平行线,交AA1于A2,则FA2=1,A2A=
17
8
-
1
4
=
15
8
,在Rt△AFA2中,有FA=
12+(
15
8
)2
=
17
8
.已知抛物线上另一点B的横坐标为2,求线段FB的长;
(3)若点P是该抛物线在第一象限上的任意一点,试探究线段FP的长度与点P纵坐标的大小关系,并证明你的猜想.
精英家教网

查看答案和解析>>

已知抛物线y=a(x﹣m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D.若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.

(1)如图1,求抛物线y=(x﹣2)2+1的伴随直线的表达式.
(2)如图2,若抛物线y=a(x﹣m)2+n(m>0)的伴随直线是y=x﹣3,伴随四边形的面积为12,求此抛物线的表达式.
(3)如图3,若抛物线y=a(x﹣m)2+n的伴随直线是y=﹣2x+b(b>0),且伴随四边形ABCD是矩形.用含b的代数式表示m、n的值.

查看答案和解析>>

已知抛物线y=a(x﹣m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D.若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.

(1)如图1,求抛物线y=(x﹣2)2+1的伴随直线的表达式.

(2)如图2,若抛物线y=a(x﹣m)2+n(m>0)的伴随直线是y=x﹣3,伴随四边形的面积为12,求此抛物线的表达式.

(3)如图3,若抛物线y=a(x﹣m)2+n的伴随直线是y=﹣2x+b(b>0),且伴随四边形ABCD是矩形.用含b的代数式表示m、n的值.

 

查看答案和解析>>

已知抛物线y=a(x﹣m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D.若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.

(1)如图1,求抛物线y=(x﹣2)2+1的伴随直线的表达式.
(2)如图2,若抛物线y=a(x﹣m)2+n(m>0)的伴随直线是y=x﹣3,伴随四边形的面积为12,求此抛物线的表达式.
(3)如图3,若抛物线y=a(x﹣m)2+n的伴随直线是y=﹣2x+b(b>0),且伴随四边形ABCD是矩形.用含b的代数式表示m、n的值.

查看答案和解析>>

已知抛物线ya(xm)2ny轴交于点A,它的顶点为点B,点AB关于原点O的对称点分别为CD.若ABCD中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.

(1)如图1,求抛物线y=(x-2)2+1的伴随直线的解析式.

(2)如图2,若抛物线ya(xm)2n(m>0)的伴随直线是yx-3,伴随四边形的面积为12,求此抛物线的解析式.

(3)如图3,若抛物线ya(xm)2n的伴随直线是y=-2xb(b>0),且伴随四边形ABCD是矩形.

①用含b的代数式表示mn的值;

②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示),若不存在,请说明理由.

查看答案和解析>>


同步练习册答案