题目列表(包括答案和解析)
(08年江苏卷)(I)设
是各项均不为零的等差数列
,且公差
,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:
(1)① 当
时,求
的数值;②求
的所有可能值;
(2)求证:对于一个给定的正整数
,存在一个各项及公差都不为零的等差数列
,其中任意三项(按原来的顺序)都不能组成等比数列。
(08年江苏卷)在平面直角坐标系中,椭圆
的焦距为2,以O为圆心,
为半径的圆,过点
作圆的两切线互相垂直,则离心率
= ▲ 。
(08年江苏卷) 若
,
且![]()
(1)求
对所有实数
成立的充要条件(用
表示)
(2)设
为两实数,
且
若![]()
求证:
在区间
上的单调增区间的长度和为
(闭区间
的长度定义为
)。
(08年江苏卷)某地区为了解70~80岁老人的日平均睡眠时间(单位:h),随机选择了50位老人进行调查。下表是这50位老人日睡眠时间的频率分布表。
序号 (i) | 分组 (睡眠时间) | 组中值( | 频数 (人数) | 频率 ( |
1 | [4,5) | 4.5 | 6 | 0.12 |
2 | [5,6) | 5.5 | 10 | 0.20 |
3 | [6,7) | 6.5 | 20 | 0.40 |
4 | [7,8) | 7.5 | 10 | 0.20 |
5 | [8,9) | 8.5 | 4 | 0.08 |
在上述统计数据的分析中,一部分计算算法流程图,则输出的S的值是 ▲ 。
(08年江苏卷)一个骰子连续投2次,点数和为4的概率为 ▲ 。
1. 构造向量
,
,所以
,
.由数量积的性质
,得
,即
的最大值为2.
2. ∵
,令
得
,所以
,当
时,
,当
时,
,所以当
时,
.
3.∵
,∴
,
,又
,∴
,则
,所以周期
.作出
在
上的图象知:若
,满足条件的
(
)存在,且
,
关于直线
对称,
,
关于直线
对称,∴
;若
,满足条件的
(
)存在,且
,
关于直线
对称,
,
关于直线
对称,
∴
.
4. 不等式
(
)表示的区域是如图所示的菱形的内部,
∵
,
当
,点
到点
的距离最大,此时
的最大值为
;
当
,点
到点
的距离最大,此时
的最大值为3.
5. 由于已有两人分别抽到5和14两张卡片,则另外两人只需从剩下的18张卡片中抽取,共有
种情况.抽到5 和14的两人在同一组,有两种情况:
(1) 5 和14 为较小两数,则另两人需从15~20这6张中各抽1张,有
种情况;
(2) 5 和14 为较大两数,则另两人需从1~4这4张中各抽1张,有
种情况.
于是,抽到5 和14 两张卡片的两人在同一组的概率为
.
6. ∵
,∴
,
设
,
,则
.
作出该不等式组表示的平面区域(图中的阴影部分
).
令
,则
,它表示斜率为
的一组平行直线,易知,当它经过点
时,
取得最小值.
解方程组
,得
,∴
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com