解三角形(1)正弦定理和余弦定理掌握正弦定理.余弦定理.并能解决一些简单的三角形度量问题.(2)应用能够运用正弦定理.余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题. 查看更多

 

题目列表(包括答案和解析)

根据下列条件,解三角形ABC.

(1)已知b=4,c=8,B=30°,求C、A、a;

(2)已知B=30°,b=,c=2,求A、C、a;

(3)已知b=6,c=9,B=45°,求C、a、A.

查看答案和解析>>

(辽宁卷理19)如图,在棱长为1的正方体

中,AP=BQ=b(0<b<1),截面PQEF,截面PQGH

(Ⅰ)证明:平面PQEF和平面PQGH互相垂直;

(Ⅱ)证明:截面PQEF和截面PQGH面积之和是定值,

并求出这个值;

(Ⅲ)若与平面PQEF所成的角为,求与平面PQGH所成角的正弦值.

说明:本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力。满分12分.

查看答案和解析>>

(辽宁卷理19)如图,在棱长为1的正方体

中,AP=BQ=b(0<b<1),截面PQEF,截面PQGH

(Ⅰ)证明:平面PQEF和平面PQGH互相垂直;

(Ⅱ)证明:截面PQEF和截面PQGH面积之和是定值,

并求出这个值;

(Ⅲ)若与平面PQEF所成的角为,求与平面PQGH所成角的正弦值.

说明:本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力。满分12分.

查看答案和解析>>

在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),满足=

(Ⅰ)求角B的大小;

(Ⅱ)设=(sin(C+),), =(2k,cos2A) (k>1),  有最大值为3,求k的值.

【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用

第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二问中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-=3,得k=.

 

查看答案和解析>>

有一解三角形的题目,因纸张破损有一个条件丢失,具体如下:在△ABC中,已知a=
3
,2cos2
A+C
2
=(
2
-1
)cosB,
c=
6
+
2
2
c=
6
+
2
2
,求角A.经推断,破损处的条件为三角形的一边长度,且答案为A=60°.将条件补充完整填在空白处.

查看答案和解析>>


同步练习册答案