即直线PF与平面PAB所成的角的大小是arcsin. --------13分 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,DC=BC=2PA,E为DB的中点.
(Ⅰ)证明:AE⊥BC;
(Ⅱ)若点F是线段BC上的动点,设平面PFE与平面PBE所成的平面角大小为θ,当θ在[0,
π4
]
内取值时,求直线PF与平面DBC所成的角的范围.

查看答案和解析>>

(2011•宝坻区一模)如图,△BCD所在的平面垂直于正△ABC所在的平面,∠BCD=90°,PA⊥平面ABC,DC=BC=2PA,E,F分别为DB,CB的中点,
(1)证明PE∥平面ABC;
(2)证明AE⊥BC;
(3)求直线PF与平面BCD所成的角的大小.

查看答案和解析>>

如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PA⊥底面ABCD,PA=AD,E、F分别是棱PD、BC的中点.
(1)求证:AE⊥PC;
(2)求直线PF与平面PAC所成的角的正切值.

查看答案和解析>>

精英家教网如图,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,DC=BC=2PA,E、F分别为DB、CB的中点,
(1)证明:AE⊥BC;
(2)求直线PF与平面BCD所成的角.

查看答案和解析>>

精英家教网三棱锥P-ABC中,PA=AB=AC,∠BAC=120°,PA⊥平面ABC,点E、F分别为线段PC、BC的中点,
(1)判断PB与平面AEF的位置关系并说明理由;
(2)求直线PF与平面PAC所成角的正弦值.

查看答案和解析>>


同步练习册答案