22. 已知函数f(x)=ln x-ax2-2x(a<0). (1)若函数f(x)存在单调递减区间.求a的取值范围, (2)若a=-且关于x的方程f(x)=-x+b在[1,4]上恰有两个不相等的实数根.求实数b的取值范围, (3)设各项为正的数列{an}满足:a1=1.an+1=ln an+an+2.n∈N*.求证:an≤2n-1 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)已知函数f(x)=sin2x+sinxcosx-(x∈R).

(1) 若x∈,求f(x)的最大值;

(2) 在△ABC中,若ABf(A)=f(B)=,求的值.

查看答案和解析>>

(本小题满分14分) 已知函数f (x)=ex-k-x,其中x∈R. (1)当k=0时,若g(x)= 定义域为R,求实数m的取值范围;(2)给出定理:若函数f (x)在[a,b]上连续,且f (a)·f (b)<0,则函数y=f (x)在区间(a,b)内有零点,即存在x0∈(a,b),使f (x0)=0;运用此定理,试判断当k>1时,函数f (x)在(k,2k)内是否存在零点.

查看答案和解析>>

(本小题满分14分) 已知函数f (x)=ex-k-x,其中x∈R. (1)当k=0时,若g(x)= 定义域为R,求实数m的取值范围;(2)给出定理:若函数f (x)在[a,b]上连续,且f (a)·f (b)<0,则函数y=f (x)在区间(a,b)内有零点,即存在x0∈(a,b),使f (x0)=0;运用此定理,试判断当k>1时,函数f (x)在(k,2k)内是否存在零点.

查看答案和解析>>

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

 (本小题满分14分)

已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.

(1)当b=0时,若对x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;

(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.

①求证:x1>1>x2

②若当x≥x1时,关于x的不等式ax2-x+xe+1≤0恒成立,求实数a的取值范围.

 

查看答案和解析>>


同步练习册答案