题目列表(包括答案和解析)
(本小题满分14分)
已知F1,F2分别是椭圆+=1的左、右焦点,曲线C是以坐标原点为顶点,以F2为焦点的抛物线,自点F1引直线交曲线C于P、Q两个不同的交点,点P关于x轴的对称点记为M.设=λ.
(Ⅰ)求曲线C的方程;
(Ⅱ)证明:=-λ;
(Ⅲ)若λ∈[2,3],求|PQ|的取值范围.
(本小题满分14分)已知曲线
;(1)由曲线C上任一点E向X轴作垂线,垂足为F,
。问:点P的轨迹可能是圆吗?请说明理由;(2)如果直线L的斜率为
,且过点
,直线L交曲线C于A,B两点,又
,求曲线C的方程。
(本小题满分14分)
已知中心在原点的双曲线C的一个焦点是
,一条渐近线的方程是
.
(Ⅰ)求双曲线C的方程;
(Ⅱ)若以
为斜率的直线
与双曲线C相交于两个不同的点M,N,线段MN的垂直平分线与两坐标轴围成的三角形的面积为
,求
的取值范围.
(本小题满分14分)(1)
(本小题满分7分)选修4-2:矩阵与变换
已知曲线
绕原点逆时针旋转
后可得到曲线
,
(I)求由曲线
变换到曲线
对应的矩阵
;.
(II)若矩阵
,求曲线
依次经过矩阵
对应的变换
变换后得到的曲线方程.
(2)(本小题满分7分)选修4—4:坐标系与参数方程
已知直线
的参数方程为
(t为参数),曲线C的极坐标方程为![]()
(1)求曲线C的直角坐标方程; (2)求直线
被曲线C截得的弦长.
(本小题满分14分)
已知动圆P(圆心为点P)过定点A(1,0),且与直线
相切。记动点P的轨迹为C。
(Ⅰ)求轨迹C的方程;
(Ⅱ)设过点P的直线l与曲线C相切,且与直线
相交于点Q。试研究:在x轴上是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com