题目列表(包括答案和解析)
(本题满分16分)设
是定义在
上的单调可导函数.已知对于任意正数
,都有
,且
.
(Ⅰ)求
,并求
的值;
(Ⅱ)令
,证明:数列
是等差数列;
(Ⅲ)设
是曲线
在点
处的切线的斜率(
),数列
的前
项和为
,求证:
.
(本题满分16分)已知函数
为实常数).
(I)当
时,求函数
在
上的最小值;
(Ⅱ)若方程
在区间
上有解,求实数
的取值范围;
(Ⅲ)证明:![]()
(参考数据:
)
(本题满分16分)已知函数
为实常数).
(I)当
时,求函数
在
上的最小值;
(Ⅱ)若方程
在区间
上有解,求实数
的取值范围;
(Ⅲ)证明:![]()
(参考数据:
)
(本小题满分16分)
已知
(
,
为此函数的定义域)同时满足下列两个条件:①函数![]()
在
内单调递增或单调递减;②如果存在区间
,使函数
在区间
上的值域为
,那么称
,
为闭函数。请解答以下问题:
(1)判断函数
是否为闭函数?并说明理由;
(2)求证:函数
(
)为闭函数;
(3)若
是闭函数,求实数
的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com