题目列表(包括答案和解析)
本小题满分14分)
三次函数
的图象如图所示,直线BD∥AC,且直线BD与函数图象切于点B,交于点D,直线AC与函数图象切于点C,交于点A.![]()
(1)若函数f(x)为奇函数且过点(1,-3),当x<0时求
的最大值 ;
(2)若函数在x=1处取得极值-2,试用c表示a和b,并求
的单调递减区间;
(3)设点A、B、C、D的横坐标分别为
,
,
,![]()
求证
;
(本小题满分14分)
已知函数
(
…是自然对数的底数)的最小值为
.
(Ⅰ)求实数
的值;
(Ⅱ)已知![]()
且
,试解关于
的不等式
;
(Ⅲ)已知
且
.若存在实数
,使得对任意的
,都有
,试求
的最大值.
(本小题满分14分)已知
,
且
,记
在
内零点为
.
(1)求当
取得极大值时,
与
的夹角θ.
(2)求
的解集.
(3)求当函数
取得最小值时
的值,并指出向量
与
的位置关系.
(本小题满分14分)
某商店经销一种奥运会纪念品,每件产品的成本为30元,并且每卖出一件产品需向税务部门上交
元(
为常数,2≤a≤5
)的税收.设每件产品的售价为x元(35≤x≤41),根据市场调查,日销售量与
(e为自然对数的底数)成反比例.已知每件产品的日售价为40元时,日销售量为10件.
(1)求该商店的日利润L(x)元与每件产品的日售价x元的函数关系式;
(2)当每件产品的日售价为多少元时,该商品的日利润L(x)最大,并求出L(x)的最大值.
本小题满分14分)
(Ⅰ)已知函数
,其中
为有理数,且
. 求
的最小值;
(Ⅱ)试用(Ⅰ)的结果证明如下命题:设
,
为正有理数. 若
,则
;
(Ⅲ)请将(Ⅱ)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.
注:当
为正有理数时,有求导公式
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com