且当 的值, 查看更多

 

题目列表(包括答案和解析)

f(x)是定义在R上的奇函数,且满足如下两个条件:
①对于任意的x,y∈R,有f(x+y)=f(x)+f(y);
②当x>0时,f(x)<0,且f(1)=-2.
求函数f(x)在[-3,3]上的最大值与最小值.

查看答案和解析>>

f(x)是定义在R上的奇函数,且满足如下两个条件:
①对于任意的x,y∈R,有f(x+y)=f(x)+f(y);
②当x>0时,f(x)<0,且f(1)=-2.
求函数f(x)在[-3,3]上的最大值与最小值.

查看答案和解析>>

f(x)是定义在R上的奇函数,且满足如下两个条件:
①对于任意的x,y∈R,有f(x+y)=f(x)+f(y);
②当x>0时,f(x)<0,且f(1)=-2.
求函数f(x)在[-3,3]上的最大值与最小值.

查看答案和解析>>

设F(1,0),M点在x轴的负半轴上,点P在y轴上,且
MP
=
PN
 , 
PM
PF

(1)当点P在y轴上运动时,求点N的轨迹C的方程;
(2)若A(4,0),是否存在垂直x轴的直线l被以AN为直径的圆截得的弦长恒为定值?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

f(x)=λ1(
a
3
x3+
b-1
2
x2+x)+λ2x•3x(a,b∈R,a>0)

(1)当λ1=1,λ2=0时,设x1,x2是f(x)的两个极值点,
①如果x1<1<x2<2,求证:f'(-1)>3;
②如果a≥2,且x2-x1=2且x∈(x1,x2)时,函数g(x)=f'(x)+2(x-x2)的最小值为h(a),求h(a)的最大值.
(2)当λ1=0,λ2=1时,
①求函数y=f(x)-3(ln3+1)x的最小值.
②对于任意的实数a,b,c,当a+b+c=3时,求证3aa+3bb+3cc≥9.

查看答案和解析>>

 

一、选择题(本大题共12小题,每小题5分,共60分。

1―5 BBACB    6―10 ADCDD    11―12 AB

二、填空题(本大题共4小题,每小题6分,共16分,

13.14   14.2   15.30   16.①③

三、解答题(本大题共6小题,共计76分)

17.解:(1)  …………2分

   (2)由题设, …………10分

 …………12分

18.解:(1)记“第一次与第二次取到的球上的号码的和是4”为事件A,则

 …………5分

所以第一次与第二次取到的地球上的号码的和是4的概率 …………6分

   (2)记“第一次与第二次取到的上的号码的积不小于6”为事件B,则

  …………11分

19.解法一:(1)∵E,F分别是AB和PB的中点,

∴EF∥PA  …………1分

又ABCD是正方形,∴CD⊥AD,…………2分

由PD⊥底面ABCD得CD⊥PD,CD⊥面PAD,

∴CD⊥PA,∴EF⊥CD。 …………4分

 

 

   (2)设AB=a,则由PD⊥底面ABCD及ABCD是正方形可求得

   (3)在平面PAD内是存在一点G,使G在平面PCB

上的射影为△PCB的外心,

G点位置是AD的中点。  …………9分

证明如下:由已知条件易证

Rt△PDG≌Rt△CDG≌Rt△BAG,…………10分

∴GP=GB=GC,即点G到△PBC三顶点的距离相等。 ……11分

∴G在平面PCB上的射影为△PCB的外心。 …………12分

解法二:以DA,DC,DP所在直线分别为x轴,y轴,z轴建立空间直角坐标系(如图)。

   (1)

  …………4分

 

 

   (2)设平面DEF的法向量为

   (3)假设存在点G满足题意

20.解:(1)设

   (2)

21.(1)令 …………1分

  …………2分

   (2)设

   (3)由

∴不等式化为  …………6分

由(2)已证 …………7分

①当

②当不成立,∴不等式的解集为 …………10分

③当

22.解:(1)  …………1分

   (2)设

①当

②当