解(1).AD=BC+2×hcot=BC+. .. 查看更多

 

题目列表(包括答案和解析)

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、

PC的中点.

(1)求证:EF∥平面PAD;

(2)求证:EF⊥CD;

(3)若ÐPDA=45°求EF与平面ABCD所成的角的大小.

【解析】本试题主要考查了线面平行和线线垂直的运用,以及线面角的求解的综合运用

第一问中,利用连AC,设AC中点为O,连OF、OE在△PAC中,∵ F、O分别为PC、AC的中点   ∴ FO∥PA …………①在△ABC中,∵ E、O分别为AB、AC的中点 ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二问中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO为EF在平面AC内的射影       ∴ CD⊥EF.

第三问中,若ÐPDA=45°,则 PA=AD=BC    ∵ EOBC,FOPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

证:连AC,设AC中点为O,连OF、OE(1)在△PAC中,∵ F、O分别为PC、AC的中点∴ FO∥PA …………①    在△ABC中,∵ E、O分别为AB、AC的中点  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO为EF在平面AC内的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,则 PA=AD=BC         ∵ EOBC,FOPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

查看答案和解析>>

设a、b、c、d是奇整数,0<a<b<c<d,且ad=bc.证明:如果对某整数k和m有a+d=2k和b+c=2m,那末a=1.

查看答案和解析>>

给出下列四个命题:
①实数a、b、c、d依次成等比数列的充要条件是ad=bc;
②实数a满足1<a<2,命题p:函数y=loga(2-ax)在区间[0,1]上是减函数为真命题;
③若f(x)=log2x,则y=f(|x|)是偶函数;
④若函数y=f(x-3)的图像关于原点对称,则函数y=f(x)的图像关于(3,0)对称;其中不正确命题的序号是


  1. A.
    ①②
  2. B.
    ②③
  3. C.
    ①④
  4. D.
    ①②③

查看答案和解析>>

已知△ABC中,A(2,-1),B(3,2),C(-3,-1),AD是BC边上的高,求
AD
及点D的坐标.

查看答案和解析>>

如图,在直角梯形ABCD中,AD//BC,,当E、F分别在线段AD、BC上,且,AD=4,CB=6,AE=2,现将梯形ABCD沿EF折叠,使平面ABFE与平面EFCD垂直。

 1.判断直线AD与BC是否共面,并证明你的结论;

2.当直线AC与平面EFCD所成角为多少时,二面角A—DC—E的大小是60°。

 

 

 

 

 

查看答案和解析>>


同步练习册答案