∴...又以下同上. 查看更多

 

题目列表(包括答案和解析)

某港口海水的深度(米)是时间(时)()的函数,记为:

已知某日海水深度的数据如下:

(时)

0

3

6

9

12

15

18

21

24

(米)

10.0

13.0

9.9

7.0

10.0

13.0

10.1

7.0

10.0

经长期观察,的曲线可近似地看成函数的图象

(I)试根据以上数据,求出函数的振幅、最小正周期和表达式;

(II)一般情况下,船舶航行时,船底离海底的距离为米或米以上时认为是安全的(船舶停靠时,船底只需不碰海底即可)。某船吃水深度(船底离水面的距离)为米,如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需时间)

【解析】第一问中利用三角函数的最小正周期为: T=12   振幅:A=3,b=10,  

第二问中,该船安全进出港,需满足:即:          ∴  ,可解得结论为得到。

 

查看答案和解析>>

甲、乙两位同学玩游戏,对于给定的实数,按下列方法操作一次产生一个新的实数:由甲、乙同时各抛一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把乘以2后再减去12;如果出现一个正面朝上,一个反面朝上,则把除以2后再加上12,这样就可得到一个新的实数,对仍按上述方法进行一次操作,又得到一个新的实数,当时,甲获胜,否则乙获胜。若甲获胜的概率为,则的取值范围是_________.

 

查看答案和解析>>

甲、乙两位同学玩游戏,对于给定的实数,按下列方法操作一次产生一个新的实数:由甲、乙同时各抛一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把乘以2后再减去12;如果出现一个正面朝上,一个反面朝上,则把除以2后再加上12,这样就可得到一个新的实数,对仍按上述方法进行一次操作,又得到一个新的实数,当时,甲获胜,否则乙获胜。若甲获胜的概率为,则的取值范围是_________.

查看答案和解析>>

甲、乙两位同学玩游戏,对于给定的实数,按下列方法操作一次产生一个新的实数:由甲、乙同时各抛一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把乘以2后再减去12;如果出现一个正面朝上,一个反面朝上,则把除以2后再加上12,这样就可得到一个新的实数,对仍按上述方法进行一次操作,又得到一个新的实数,当时,甲获胜,否则乙获胜。若甲获胜的概率为,则的取值范围是_________.

查看答案和解析>>

已知数列的前项和为,且 (N*),其中

(Ⅰ) 求的通项公式;

(Ⅱ) 设 (N*).

①证明:

② 求证:.

【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到,②由于

所以利用放缩法,从此得到结论。

解:(Ⅰ)当时,由.  ……2分

若存在

从而有,与矛盾,所以.

从而由.  ……6分

 (Ⅱ)①证明:

证法一:∵

 

.…………10分

证法二:,下同证法一.           ……10分

证法三:(利用对偶式)设

.又,也即,所以,也即,又因为,所以.即

                    ………10分

证法四:(数学归纳法)①当时, ,命题成立;

   ②假设时,命题成立,即,

   则当时,

    即

故当时,命题成立.

综上可知,对一切非零自然数,不等式②成立.           ………………10分

②由于

所以

从而.

也即

 

查看答案和解析>>


同步练习册答案