为的正方形...分别是棱..的中点. 查看更多

 

题目列表(包括答案和解析)

E、F分别是正方形ABCD的边AB和CD的中点,EF交BD于O,以EF为棱将正方形折成直二面角,则∠BOD=
120°
120°

查看答案和解析>>

正方体ABCD-A1B1C1D1的棱长为1,P、Q分别是正方形AA1D1D和A1B1C1D1的中心.
(1)证明:PQ∥平面DD1C1C;
(2)求线段PQ的长;
(3)求PQ与平面AA1D1D所成的角.

查看答案和解析>>

 正方体ABCD—A1B1C1D1的棱长为1,EFG分别为棱AA1CC1A1B1的中点,则下列几个命题:

    ①在空间中与三条直线A1D1EFCD都相交的直线有无数条;

②点G到平面ABC1D1的距离为

③直线AA1与平面ABC1D1所成的角等于45°;

④空间四边形ABCD1在正方体六个面内形成六个射影,其面积的最小值是

⑤直线A1C1与直线AG所成角的余弦值为;

⑥若一直线PQ既垂直于A1D,又垂直于AC,则直线PQ与BD1是垂直不相交的关系.

其中真命题是              .(写出所有真命题的序号)

 

查看答案和解析>>

正方体ABCD-A1B1C1D1的棱长为1,P、Q分别是正方形AA1D1D和A1B1C1D1的中心。

     (1)证明:PQ∥平面DD1C1C;

(2)求线段PQ的长;

(3)求PQ与平面AA1D1D所成的角。

查看答案和解析>>

正方体ABCD-A1B1C1D1的棱长为1,P、Q分别是正方形AA1D1D和A1B1C1D1的中心.
(1)证明:PQ平面DD1C1C;
(2)求线段PQ的长;
(3)求PQ与平面AA1D1D所成的角.

查看答案和解析>>

 

一、选择题:

题号

1

2

3

4

5

6

7

8

9

10

答案

B

B

B

C

A

D

B

C

C

B

 

二、填空题:

题号

11

12

13

14

15

 

答案

 

1000

6ec8aac122bd4f6e

6ec8aac122bd4f6e

 

三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.

16.(本小题满分12分)

解:(1)由=,得:=

              即:,     

        又∵0<6ec8aac122bd4f6e     ∴=6ec8aac122bd4f6e.             

   (2)直线6ec8aac122bd4f6e方程为:

                           

6ec8aac122bd4f6e到直线6ec8aac122bd4f6e的距离为:

              ∵

              ∴       ∴ 

              又∵0<6ec8aac122bd4f6e,        

∴sin>0,cos<0

              ∴ 

∴sin6ec8aac122bd4f6e-cos6ec8aac122bd4f6e=   

17.(本小题满分12分)

解:(1)某同学被抽到的概率为

设有名男同学,则男、女同学的人数分别为

(2)把名男同学和名女同学记为,则选取两名同学的基本事件有种,其中有一名女同学的有

选出的两名同学中恰有一名女同学的概率为

(3)

第二同学的实验更稳定

                              

18.(本小题满分14分)

解:(1)分别是棱中点   

平面

是棱的中点            

平面

平面平面

(2)  

同理

      

  

,       

,,    

 

19.(本小题满分14分)

解:(1)由……①,得……②

②-①得:    

所以,求得     

(2)    

                                                     

 

 

20.(本小题满分14分)

解:(1)由题设知:

得:

解得椭圆的方程为

(2)

            

从而将求的最大值转化为求的最大值

是椭圆上的任一点,设,则有

时,取最大值   的最大值为

 

21.(本小题满分14分)

解:(1)由,,得,

所以,

(2)由题设得

对称轴方程为

由于上单调递增,则有

(Ⅰ)当时,有

(Ⅱ)当时,

设方程的根为

①若,则,有    解得

②若,即,有

          

由①②得

综合(Ⅰ), (Ⅱ)有