因为bn?bn+2-b=(2n-1)(2n+2-1)-(2n-1-1)2=(22n+2-2n+2-2n+1)-(22n+2-2-2n+1-1)=-5?2n+4?2n=-2n<0, 查看更多

 

题目列表(包括答案和解析)

在数列{an}中,已知a1=
1
4
an+1
an
=
1
4
bn+2=3log
1
4
an(n∈N*)

(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等差数列;
(3)设数列{cn}满足cn=an+bn,求{cn}的前n项和Sn

查看答案和解析>>

数列{an}是等差数列,a1=-2,a3=2.
(1)求通项公式an
(2)若bn=(
2
)an
,求数列{an•bn}的前n项和Sn.

查看答案和解析>>

已知二次函数f(x)=x2+ax+c,满足不等式f(x)<0的解集是(-2,0),
(Ⅰ)求f(x)的解析式;
(Ⅱ)若点(an,an+1)(n∈N*)在函数f(x)的图象上,且a1=99,令bn=lg(1+an),
①求证:数列{bn}为等比数列;
②令cn=nbn,数列{cn}的前n项和为Sn,是否存在正实数k使得不等式kn2bn>Sn+bn+2-2对任意n∈N*的恒成立?若存在,求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

在数列{an} 中,已知a1=
1
4
an+1
an
=
1
4
,bn+2=3log
1
4
an
(n∈N*).
(Ⅰ)求数列{an} 的通项公式;
(Ⅱ)求证:数列{bn} 是等差数列;
(Ⅲ)设数列{cn} 满足cn=an•bn,求{cn} 的前n项和Sn

查看答案和解析>>

设数列{bn}的前n项和为Sn,且bn=2-2Sn;数列{an}为等差数列,且a5=14,a7=20.
(1)求数列{bn}的通项公式;
(2)若cn=an•bn(n=1,2,3…),Tn为数列{cn}的前n项和.求Tn

查看答案和解析>>


同步练习册答案