易证明O1H∥EB.则∠FO1H为异面直线EB与F所成角. 查看更多

 

题目列表(包括答案和解析)

(2012•浦东新区三模)如图,弧AEC是半径为r的半圆,AC为直径,点E为弧AC的中点,点B和点C为线段AD的三等分点,线段ED与弧EC交于点G,且EG=
23
GD,平面AEC外一点F满足FC⊥平面BED,FC=2r.
(1)证明:EB⊥FD;
(2)将△FCG(及其内部)绕FC所在直线旋转一周形成一几何体,求该几何体的体积.

查看答案和解析>>

精英家教网如图,
AEC
是半径为a的半圆,AC为直径,点E为
AC
的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FB=FD=
5
a
EF=
6
a

(1)证明:EB⊥FD;
(2)已知点Q,R为线段FE,FB上的点,FQ=
2
3
FE
FR=
2
3
FB
,求平面BED与平面RQD所成二面角的正弦值.

查看答案和解析>>

如图,四棱锥P-ABCD的底面为梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点.
(I)证明:EB∥平面PAD;
(II)若PA=AD=DC,求二面角E-BD-C的余弦值;
(III)在(II)的条件下,侧棱PB上是否存在一点M,使得AM∥平面BDE.若存在,求PM:MB的值;若不存在,请说明理由.

查看答案和解析>>

精英家教网如图,弧AEC是半径为a的半圆,AC为直径,点E为弧AC的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FC⊥平面BED,FB=
5
a.
(1)证明:EB⊥FD;
(2)求点B到平面FED的距离.

查看答案和解析>>

如图所示,四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,PA=AD=AB=1.
(1)证明:EB∥平面PAD;
(2)证明:BE⊥平面PDC;
(3)求三棱锥B-PDC的体积V.

查看答案和解析>>


同步练习册答案