题目列表(包括答案和解析)
已知函数
的最小值为0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若对任意的
有
≤
成立,求实数
的最小值;
(Ⅲ)证明
(
).
【解析】(1)解:
的定义域为![]()
![]()
由
,得![]()
当x变化时,
,
的变化情况如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
极小值 |
|
因此,
在
处取得最小值,故由题意
,所以![]()
(2)解:当
时,取
,有
,故
时不合题意.当
时,令
,即![]()
![]()
令
,得![]()
①当
时,
,
在
上恒成立。因此
在
上单调递减.从而对于任意的
,总有
,即
在
上恒成立,故
符合题意.
②当
时,
,对于
,
,故
在
上单调递增.因此当取
时,
,即
不成立.
故
不合题意.
综上,k的最小值为
.
(3)证明:当n=1时,不等式左边=
=右边,所以不等式成立.
当
时,![]()
![]()
![]()
在(2)中取
,得
,
从而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
综上,
,![]()
已知函数![]()
(Ⅰ)求
的单调减区间;
(Ⅱ)若
在区间[-2,2].上的最大值为20,求它在该区间上的最小值.
【解析】(1)求导令导数小于零.
(2)利用导数列表求极值,最值即可.
已知函数
.
(1)求
在区间
上的最大值;
(2)若函数
在区间
上存在递减区间,求实数m的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用,求解函数的最值。第一问中,利用导数求解函数的最值,首先求解导数
,然后利用极值和端点值比较大小,得到结论。第二问中,我们利用函数在
上存在递减区间,即
在
上有解,即
,即可,可得到。
解:(1)
,
令
,解得
……………3分
![]()
,
在
上为增函数,在
上为减函数,
.
…………6分
(2)![]()
在
上存在递减区间,
在
上有解,……9分
![]()
在
上有解,
![]()
,
所以,实数
的取值范围为
已知函数
,
,其中
.
(1)若
是函数
的极值点,求实数
的值;
(2)若对任意的
(
为自然对数的底数)都有
≥
成立,求实数
的取值范围.
【解析】(1)根据
建立关于a的方程求a即可.
(2)本题要分别求出f(x)在[1,e]上的最小值,g(x)在[1,e]上的最大值,然后
,解关于a的不等式即可.
已知函数
,曲线
在点
处的切线为
,若
时,
有极值.
(1)求
的值;
(2)求
在
上的最大值和最小值.
【解析】(1)根据
可建立关于a,b,c的三个方程,解方程组即可.
(2)在(1)的基础上,利用导数列表求极值,最值即可.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com