, 又, 从而 .------- --------7分 查看更多

 

题目列表(包括答案和解析)

电视剧《华罗庚》中有一个镜头:华罗庚少年时代用心算法解出了“孙子算经”中的难题,原文是:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?学曰:二十三.”即一个正整数,被3,5,7除,余数分别为2,3,2.“孙子算经”解法的口诀是:“三人同行七十稀,五树梅花二十一,其子团圆正月丰,除百零五便得知.”

    这个算法又叫“韩信点兵”.相传韩信才略过人,领兵打仗时,为了对敌方保密,从不点自己军队的人数,只是让他的士兵以三人一排很快地从他面前过去,再以五人一排走一次,最后以七人一排走过去,由于队伍走得很快,别人根本来不及数有多少人.然而韩信只对各队士兵的最后一排掠一眼,就知道总数了,他利用的就是上面的这个口诀,你能理解这个口诀吗?

    求解“孙子问题”的算法有很多,你能想出什么样的算法?

   

查看答案和解析>>

电视剧《华罗庚》中有一个镜头:华罗庚少年时代用心算法解出了“孙子算经”中的难题,原文是:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?学曰:二十三.”即一个正整数,被3,5,7除,余数分别为2,3,2.“孙子算经”解法的口诀是:“三人同行七十稀,五树梅花二十一,其子团圆正月丰,除百零五便得知.”

    这个算法又叫“韩信点兵”.相传韩信才略过人,领兵打仗时,为了对敌方保密,从不点自己军队的人数,只是让他的士兵以三人一排很快地从他面前过去,再以五人一排走一次,最后以七人一排走过去,由于队伍走得很快,别人根本来不及数有多少人.然而韩信只对各队士兵的最后一排掠一眼,就知道总数了,他利用的就是上面的这个口诀.

    画出程序框图,并编写程序解决“韩信点兵”问题.

查看答案和解析>>

电视剧《华罗庚》中有一个镜头:华罗庚少年时代用心算法解出了“孙子算经”中的难题,原文是:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?学曰:二十三.”即一个正整数,被3,5,7除,余数分别为2,3,2.“孙子算经”解法的口诀是:“三人同行七十稀,五树梅花二十一,其子团圆正月丰,除百零五便得知.”

这个算法又叫“韩信点兵”.相传韩信才略过人,领兵打仗时,为了对敌方保密,从不点自己军队的人数,只是让他的士兵以三人一排很快地从他面前过去,再以五人一排走一次,最后以七人一排走过去,由于队伍走得很快,别人根本来不及数有多少人.然而韩信只对各队士兵的最后一排掠一眼,就知道总数了,他利用的就是上面的这个口诀,你能理解这个口诀吗?

求解“孙子问题”的算法有很多,你能想出什么样的算法?

查看答案和解析>>

数列首项,前项和满足等式(常数……)

(1)求证:为等比数列;

(2)设数列的公比为,作数列使 (……),求数列的通项公式.

(3)设,求数列的前项和.

【解析】第一问利用由

两式相减得

时,

从而  即,而

从而  故

第二问中,     又为等比数列,通项公式为

第三问中,

两边同乘以

利用错位相减法得到和。

(1)由

两式相减得

时,

从而   ………………3分

  即,而

从而  故

对任意为常数,即为等比数列………………5分

(2)    ……………………7分

为等比数列,通项公式为………………9分

(3)

两边同乘以

………………11分

两式相减得

 

查看答案和解析>>

已知点),过点作抛物线的切线,切点分别为(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的条件下,若以点为圆心的圆与直线相切,求圆的方程;

(Ⅲ)若直线的方程是,且以点为圆心的圆与直线相切,

求圆面积的最小值.

【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。

中∵直线与曲线相切,且过点,∴,利用求根公式得到结论先求直线的方程,再利用点P到直线的距离为半径,从而得到圆的方程。

(3)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,借助于函数的性质圆面积的最小值

(Ⅰ)由可得,.  ------1分

∵直线与曲线相切,且过点,∴,即

,或, --------------------3分

同理可得:,或----------------4分

,∴. -----------------5分

(Ⅱ)由(Ⅰ)知,,,则的斜率

∴直线的方程为:,又

,即. -----------------7分

∵点到直线的距离即为圆的半径,即,--------------8分

故圆的面积为. --------------------9分

(Ⅲ)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,    ………10分

当且仅当,即时取等号.

故圆面积的最小值

 

查看答案和解析>>


同步练习册答案