题目列表(包括答案和解析)
设函数
,其中
为常数.
(1)当
时,判断函数
在定义域上的单调性;
(2)若函数
的有极值点,求
的取值范围及
的极值点;
(3)求证对任意不小于3的正整数
,不等式
都成立.
对于任意的
(
不超过数列的项数),若数列的前
项和等于该数列的前
项之积,则称该数列为
型数列。
(1)若数列
是首项
的
型数列,求
的值;
(2)证明:任何项数不小于3的递增的正整数列都不是
型数列;
(3)若数列
是
型数列,且
试求
与
的递推关系,并证明
对
恒成立。
设函数
,其中
为常数.
(Ⅰ)当
时,判断函数
在定义域上的单调性;
(Ⅱ)当
时,求
的极值点并判断是极大值还是极小值;
(Ⅲ)求证对任意不小于3的正整数
,不等式
都成立.
设函数
,其中
为常数.
(Ⅰ)当
时,判断函数
在定义域上的单调性;
(Ⅱ)当
时,求
的极值点并判断是极大值还是极小值;
(Ⅲ)求证对任意不小于3的正整数
,不等式
都成立.
对于任意的
(
不超过数列的项数),若数列的前
项和等于该数列的前
项之积,则称该数列为
型数列。
(1)若数列
是首项
的
型数列,求
的值;
(2)证明:任何项数不小于3的递增的正整数列都不是
型数列;
(3)若数列
是
型数列,且
试求
与
的递推关系,并证明
对
恒成立。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com