设函数
,其中
为常数.
(Ⅰ)当
时,判断函数
在定义域上的单调性;
(Ⅱ)当
时,求
的极值点并判断是极大值还是极小值;
(Ⅲ)求证对任意不小于3的正整数
,不等式
都成立.
科目:高中数学 来源: 题型:解答题
对于函数
,若在定义域内存在实数
,满足
,则称
为“局部奇函数”.
(Ⅰ)已知二次函数
,试判断
是否为“局部奇函数”?并说明理由;
(Ⅱ)若
是定义在区间
上的“局部奇函数”,求实数
的取值范围;
(Ⅲ)若
为定义域
上的“局部奇函数”,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
的定义域为
,若
在
上为增函数,则称
为“一阶比增函数”.
(Ⅰ) 若
是“一阶比增函数”,求实数
的取值范围;
(Ⅱ) 若
是“一阶比增函数”,求证:
,
;
(Ⅲ)若
是“一阶比增函数”,且
有零点,求证:
有解.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
探究函数f(x)=x+
,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
| x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
满足
,其中a>0,a≠1.
(1)对于函数
,当x∈(-1,1)时,f(1-m)+f(1-m2)<0,求实数m的取值集合;
(2)当x∈(-∞,2)时,![]()
的值为负数,求
的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com